Lookup Singularity
1. 引言
Lookup Singularity概念 由Barry WhiteHat在2022年11月在zkResearch论坛 Lookup Singularity中首次提出:
- 其主要目的是:让SNARK前端生成仅需做lookup的电路。
 - Barry预测这样有很多好处,特别是对于可审计性 以及 形式化验证: 
- 更易于审计单个lookup argument和各种lookup tables,不再需要数千行的硬编码电路。
 
 - 承认现有的lookup argument方案具有性能瓶颈 但 预测将得到改进: 
- 强调可能需要支持巨大table,如size为 2 128 2^{128} 2128的table。
 
 - Lasso/Jolt可能可实现该愿景?
 
多年来,ZKP的核心元素为check:
- A ∗ B + D = = C A*B+D==C A∗B+D==C
 
在构建整个电路过程中,重复运用该check。将这种表示的电路称为R1CS。
但是,对于某些任务,R1CS昂贵得令人望而却步,为此,引入了lookup arguments的大量使用。当前,很多ZKP使用lookup argument + R1CS变种多项式承诺 来构建电路。
仅使用R1CS来构建电路存在一些障碍。为此,人们创建了一些hand tuned circuits,在这些hand tuned circuits中,同时包含了多项式约束和lookup arguments。这些hand tuned circuits是特定的,并不是很容易扩展。
1.1 多项式约束
多项式约束是复杂的。电路实现人员构建大量多项式方程式,整个电路定义为由多项式方程式组成的系统。
 对这个“由多项式方程式组成的系统” 的solution,构成了a valid proof。很难对方程组的结果进行推理。目前的形式化验证工具无法求解素数域中的多项式方程。
1.2 Lookup argument
lookup argument为set membership check。lookup argument:
- 首次用于做高效的big integer arithmetic。
 - 目前还用作VM的控制流
 - 做某些不是snark-friendly的运算
 - 并不是对所有运算都是更高效的
 - 每个lookup会引入一定的prover开销
 - 目前控制使用lookup argument的次数 的原因在于,其对Prover来说是昂贵的。
 
2. 为何Lookup arguments很好?
2.1 语言
当前的snark friendly语言对于新程序员来说是难学的。其使用了不同于之前范式的素数域和多项式约束。而仅使用lookup arguments的语言可能会更简单。当前的语言擅长做snarks定向计算,但当用于传统计算时要昂贵很多。
而仅有lookup的语言,将:
- 既擅长做snarks定向计算
 - 也擅长做传统计算
 
2.2 安全审查
审计人员不再需要取对一组多项式方程式求解。lookup arguments推理起来要简单得多。
如:某电路具有一个ANDgate,有2个输入bit 变量,输出为这2个输入的AND运算结果。
多项式方案为:
(x)(x-1) = 0 
y(y-1) = 0 
x*y = out
return(out)
 
Lookup方案为:
out = get x,y from AND table
return(out)
 
其中AND lookup table为:
 
由此可知,Lookup方案要简单得多。因此,对于仅有lookup的电路,要更容易找出bug。
2.3 形式化验证
形式化验证工具需对一组多项式方程式求解。现有的形式化验证工具不擅长求解素数域中的多项式方程——这样会引入大量额外工作。
而仅使用lookup argument的话,则可使用现有的形式化验证工具,同时可能可探索一些其它方案。
lookup argument限制了电路中任意point的有限变量集合,使得可能的变量集合由 2 254 2^{254} 2254 限制为了 2 2 2或 2 16 2^{16} 216。这样甚至可支持做state space enumeration 来确认 “电路是正确的”。
2.4 信息论对比
为高效将程序描述为电路,需构建一个电路来将“某输入”映射为“正确的输出”。可将“电路”看成是“每个prover time second编码的信息”。这似乎是对比“实现电路的不同方式”的一种好角度。
多项式约束具有有限的degree:
- 因为degree会影响Prover time。
 - degree会限制可编码的信息。
 
如degree为5的多项式可将5个输入值 映射为 5个输出值。除非增加degree,否则无法在该多项式中包含更多的值。
很多情况下,这样是ok的,因为是使用多项式约束的structure来做计算。因此,乘法运算对应为多项式运算 A ∗ B = = C A*B==C A∗B==C,而XOR运算不是,需要编码为keys to values。
Lookup argument可包含更多的信息。之前已限制lookup table size为 2 28 2^{28} 228个元素。但近期研究成果表明,circuit size仅受限于可灵活完成的最大trusted setup——会限制table_size。
 Baloo: Nearly Optimal Lookup Arguments中指出:
- 单个多项式约束中可包含约 5 ∗ 2 254 5*2^{254} 5∗2254位信息。
 - Lookup argument可包含 2 254 ∗ table_size 2^{254}*\text{table\_size} 2254∗table_size
 
当使用多项式约束的structure时,多项式约束是很有用的。但随着更大尺寸的table变得可行,这种优势将消失。
3. 结论
若可仅使用lookup argument来高效定义电路,则将由更简单的工具和电路。
 这样,lookup argument 将总是比 多项式约束 效率更高。
未来将关注构建以lookup为中心的ZKP工具。
4. 展望
未来工作:
- 比较现有电路的效率
 - 构建仅有lookup的语言示例
 - 对不同lookup argument效率做对比,并预测改进空间。
 - 寻找lookup argument优于(和劣于)多项式约束的实例: 
- 寻找lookup argument 和 多项式约束 的worst case。
 - 对现有电路进行benchmark,比对效率: 
- lookup argument
 - lookup + polynomial constraints
 
 
 
参考资料
[1] Lookup Singularity
 [2] The lookup singularity - how zero-knowledge proofs can be made simpler and easier to review.
Justin Thaler系列博客
- SNARK Design
 - Rollup项目的SNARK景观
 - SNARK原理示例
 - SNARK性能及安全——Prover篇
 - SNARK性能及安全——Verifier篇
 - sum-check protocol in zkproof
 - sum-check protocol深入研究
 - Lasso、Jolt 以及 Lookup Singularity——Part 1
 - Lasso、Jolt 以及 Lookup Singularity——Part 2
 
lookup系列博客
- PLOOKUP
 - PLOOKUP代码解析
 - Efficient polynomial commitment schemes for multiple points and polynomials学习笔记
 - PLONK + PLOOKUP
 - PlonKup: Reconciling PlonK with plookup
 - PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge 学习笔记
 - Plonk代码解析
 - RapidUp: Multi-Domain Permutation Protocol for Lookup Tables学习笔记
 - Lookup argument总览
 - Halo2 学习笔记——设计之Proving system之Lookup argument(1)
 - 多变量lookup argument
 - cq:fast lookup argument
 - Lookup Argument性能优化——Caulk
 - 2023年 ZK Hack以及ZK Summit 亮点记
 - Research Day 2023:Succinct ZKP最新进展
 - Lasso、Jolt 以及 Lookup Singularity——Part 1
 - Lasso、Jolt 以及 Lookup Singularity——Part 2
 
相关文章:
Lookup Singularity
1. 引言 Lookup Singularity概念 由Barry WhiteHat在2022年11月在zkResearch论坛 Lookup Singularity中首次提出: 其主要目的是:让SNARK前端生成仅需做lookup的电路。Barry预测这样有很多好处,特别是对于可审计性 以及 形式化验证ÿ…...
idea 本地版本控制 local history
idea 本地版本控制 local history 如何打开 1 自定义快捷键 settings->keymap->搜索框输入 show history -》Add Keyboard Shortcut -》设置为 CtrlAltL 2 右键文件-》local history -》show history 新建文件 版本1,creating class com.geekmice…这个是初…...
【Freertos基础入门】深入浅出freertos互斥量
文章目录 前言一、互斥量是什么?二、互斥量的使用场景三、互斥量的使用1.创建 2.删除互斥量3.give和take四、示例代码总结 前言 FreeRTOS是一款开源的实时操作系统,提供了许多基本的内核对象,其中包括互斥锁(Mutex)。…...
皮爷咖啡基于亚马逊云科技的数据架构,加速数据治理进程
皮爷咖啡(Peet’s Coffee)是美国精品咖啡品牌,于2017年进入中国,为中国消费者带来传统经典咖啡饮品,并特别呈现更加丰富的品质咖啡饮品体验。通过深入应用亚马逊云科技云原生数据库产品Amazon Redshift以及Amazon DMS等…...
C++ string类详解
⭐️ string string 是表示字符串的字符串类,该类的接口与常规容器的接口基本一致,还有一些额外的操作 string 的常规操作,在使用 string 类时,需要使用 #include <string> 以及 using namespace std;。 ✨ 帮助文档&…...
深入浅出Pytorch函数——torch.nn.init.ones_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
一、docker及mysql基本语法
文章目录 一、docker相关命令二、mysql相关命令 一、docker相关命令 (1)拉取镜像:docker pull <镜像ID/image> (2)查看当前docker中的镜像:docker images (3)删除镜像&#x…...
【计算机网络】13、ARP 包:广播自己的 mac 地址和 ip
机器启动时,会向外广播自己的 mac 地址和 ip 地址,这个即称为 arp 协议。范围是未经过路由器的部分,如下图的蓝色部分,范围内的设备都会在本地记录 mac 和 ip 的绑定信息,若有重复则覆盖更新(例如先收到 ma…...
通过微软Azure调用GPT的接口API-兼容平替OpenAI官方的注意事项
众所周知,我们是访问不通OpenAI官方服务的,但是我们可以自己通过代理或者使用第三方代理访问接口 现在新出台的规定禁止使用境外的AI大模型接口对境内客户使用,所以我们需要使用国内的大模型接口 国内的效果真的很差,现在如果想使…...
回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本介绍程序设计…...
GAN!生成对抗网络GAN全维度介绍与实战
目录 一、引言1.1 生成对抗网络简介1.2 应用领域概览1.3 GAN的重要性 二、理论基础2.1 生成对抗网络的工作原理2.1.1 生成器生成过程 2.1.2 判别器判别过程 2.1.3 训练过程训练代码示例 2.1.4 平衡与收敛 2.2 数学背景2.2.1 损失函数生成器损失判别器损失 2.2.2 优化方法优化代…...
自动驾驶仿真:基于Carsim开发的加速度请求模型
文章目录 前言一、加速度输出变量问题澄清二、配置Carsim动力学模型三、配置Carsim驾驶员模型四、添加VS Command代码五、Run Control联合仿真六、加速度模型效果验证 前言 1、自动驾驶行业中,算法端对于纵向控制的功能预留接口基本都是加速度,我们需要…...
.netcore grpc客户端工厂及依赖注入使用
一、客户端工厂概述 gRPC 与 HttpClientFactory 的集成提供了一种创建 gRPC 客户端的集中方式。可以通过依赖包Grpc.Net.ClientFactory中的AddGrpcClient进行gRPC客户端依赖注入AddGrpcClient函数提供了许多配置项用于处理一些其他事项;例如AOP、重试策略等 二、案…...
C语言入门_Day7 逻辑运算
目录: 前言 1.逻辑运算 2.优先级 3.易错点 4.思维导图 前言 算术运算用来进行数据的计算和处理;比较运算是用来比较不同的数据,进而来决定下一步怎么做;除此以外还有一种运算叫做逻辑运算,它的应用场景也是用来影…...
什么是Eureka?以及Eureka注册服务的搭建
导包 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 htt…...
Docker安装并配置镜像加速器,镜像、容器的基本操作
目录 1.安装docker服务,配置镜像加速器 (1)安装依赖的软件包 (2)设置yum源,我配置的阿里仓库 (3)选择一个版本安装 (4)启动docker服务,并设置…...
前端 -- 基础 网页、HTML、 WEB标准 扫盲详解
什么是网页 : 网页是构成网站的基本元素,它通常由 图片、链接、文字、声音、视频等元素组成。 通常我们看到的网页 ,常见以 .html 或 .htm 后缀结尾的文件, 因此俗称 HTML 文件 什么是 HTML : HTML 指的是 超文本标记语言,…...
分布式锁实现方式
分布式锁 1 分布式锁介绍 1.1 什么是分布式 一个大型的系统往往被分为几个子系统来做,一个子系统可以部署在一台机器的多个 JVM(java虚拟机) 上,也可以部署在多台机器上。但是每一个系统不是独立的,不是完全独立的。需要相互通信ÿ…...
C语言小练习(一)
🌞 “人生是用来体验的,不是用来绎示完美的,接受迟钝和平庸,允许出错,允许自己偶尔断电,带着遗憾,拼命绽放,这是与自己达成和解的唯一办法。放下焦虑,和不完美的自己和解…...
Flask-flask系统运行后台轮询线程
对于有些flask系统,后台需要启动轮询线程,执行特定的任务,以下是一个简单的例子。 globals/daemon.py import threading from app.executor.ops_service import find_and_run_ops_task_todo_in_redisdef context_run_func(app, func):with …...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
