当前位置: 首页 > news >正文

深度学习环境搭建 cuda、模型量化bitsandbytes安装教程 windows、linux

cuda、cudann、conda安装教程

输入以下命令,查看 GPU 支持的最高 CUDA 版本。

nvidia-smi

cuda安装(cudatoolkit)

前往 Nvidia 的 CUDA 官网:CUDA Toolkit Archive | NVIDIA Developer 

CUDA Toolkit 11.8 Downloads | NVIDIA Developer

wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run

cudnn安装

linux

CUDA Toolkit Archive | NVIDIA Developer

下载下来后扔到服务器上:

cudnn-linux-x86_64-8.4.1.50_cuda10.2-archive.tar.xz

注意他是 xz 不是 gz 所以解压就是:

tar -xf cudnn-linux-x86_64-8.4.1.50_cuda10.2-archive.tar.xz

之前,是将 cudnn 的文件扔到 cuda 的路径就OK了,然而事实上,不一定放到cuda的路径,只要添加到 LD_LIBRARY_PATH 即可

解压之后,有目录cudnn-linux-x86_64-8.4.1.50_cuda10.2-archive,其下有 include 和 lib

将该路径添加到 LD_LIBRARY_PATH,给这个路径起一个名字:

放到配置文件里:

echo "export CUDNN_DIR=$(pwd)" >> /etc/profile
echo "export LD_LIBRARY_PATH=$CUDNN_DIR/lib:$LD_LIBRARY_PATH" >> /etc/profile

之后刷新一下环境变量:

source /etc/profile

刷新完看看是否正确添加:

echo $CUDNN_DIR
/root/cudnn-linux-x86_64-8.4.1.50_cuda10.2-archive

返回这个就OK

再看看 LD_LIBRARY_PATH 对不对

echo $LD_LIBRARY_PATH

torch安装

Start Locally | PyTorch

根据自己电脑和系统在网页上选择适配自己的选项。

  • 第一行是选择torch是否稳定版本,默认稳定版本。
  • 第二行是选择自己的系统,有linux,mac,windows。 
  • 第三行是在什么环境安装:有anacoda里面安装, cmd里面pip安装,在libtorch安装,或者源码安装。
  • 第四行是语言选择:提供了python和c++/java
  • 第五行是否选择用cuda gpu版本的,如果是就要去看自己cuda版本(自行谷歌,百度),我这里选择none,不用gpu,这样就是cpu版本的torch
  • 第六行是安装的命令直接复制即可,到选择相应的环境安装,用anaconda或者pip这两个环境居多。

还有一个要特别说明,一定要用64位的环境,不论是python IDE或者Anaconda都要安装64位的,否则你尝试网上各种方法都没用。(博主含泪的经验,花了大量时间,网上查遍方法,结果发现是位数问题,直接卸载了32位的anaconda,装了64位发现成功了),至于位数怎么看,如果安装的是系统python,直接在cmd命令里面输入python,前提是添加了系统环境变量给python才行。如下图我就是开始安装的32位,尝试了很多方法都失败。ana从打开始也是32位的。
 

bitsandbytes安装

window

魔改bitsandbytes库让他支持windows。

python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui

安装window版本的bitsandbytes

或者

pip uninstall bitsandbytes
pip install bitsandbytes-windows

另一种选择https://github.com/acpopescu/bitsandbytes/releases/tag/v0.38.0-win0

linux

GitHub - TimDettmers/bitsandbytes: 8-bit CUDA functions for PyTorch

1.pip安装

pip install bitsandbytes

2.本地编译,选择自己的cuda版本

git clone https://github.com/timdettmers/bitsandbytes.git
cd bitsandbytes# CUDA_VERSIONS in {110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 120}
# make argument in {cuda110, cuda11x, cuda12x}
# if you do not know what CUDA you have, try looking at the output of: python -m bitsandbytes
CUDA_VERSION=117 make cuda11x
python setup.py install

将 Int8 推理与 HuggingFace 转换器结合使用

from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained('decapoda-research/llama-7b-hf,device_map='auto',load_in_8bit=True,max_memory=f'{int(torch.cuda.mem_get_info()[0]/1024**3)-2}GB')

int4

from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
from transformers import AutoModelForCausalLM, BitsAndBytesConfig# quantization configuration for NF4 (4 bits)
quantization_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_quant_type='nf4',bnb_4bit_compute_dtype=torch.bfloat16
)
。。。。。。
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat",quantization_config=quantization_config,device_map="auto",trust_remote_code=True
).eval()

int4效果,12G显卡可以带动

from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer# quantization configuration for NF4 (4 bits)
quantization_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_quant_type='nf4',bnb_4bit_compute_dtype=torch.bfloat16
)# quantization configuration for Int8 (8 bits)
# quantization_config = BitsAndBytesConfig(load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat",device_map="cuda:0",quantization_config=quantization_config,trust_remote_code=True,
).eval()response, history = model.chat(tokenizer, "你好", history=None)
print(response)
response, history = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", history=history)
print(response)
你好!很高兴为你提供帮助。
这是一个关于一个年轻人奋斗创业最终取得成功的故事。这个年轻人叫做李明,他来自一个普通的家庭。他从小就对商业感兴趣,梦想着有一天能够成为一名成功的企业家。然而,他的家庭条件并不富裕,他需要通过自己的努力来实现自己的梦想。李明在大学期间就开始创业,他成立了一家电子商务公司。一开始,公司的发展并不顺利,面临着很多困难和挑战。但是,李明并没有放弃,他坚定地相信自己的梦想,并且不断地努力工作。他不断地学习和探索,寻找新的商机和创意。他也不断地与人交流和合作,寻求帮助和支持。最终,他的公司开始逐渐发展壮大,获得了越来越多的客户和投资者。经过几年的努力,李明的公司已经成为了一家成功的电子商务企业。他的创业经历也激励了很多人,让他们相信只要努力奋斗,就能够实现自己的梦想。这个故事告诉我们,创业并不是一件容易的事情,需要付出大量的努力和时间。但是,只要我们相信自己,不断努力工作,就一定能够取得成功。

pyopenjtalk 安装

ModuleNotFoundError: No module named 'pyopenjtalk'

pip install pyopenjtalk --no-build-isolation

参考资料

GitHub - jllllll/bitsandbytes-windows-webui: Windows compile of bitsandbytes for use in text-generation-webui.

GitHub - Keith-Hon/bitsandbytes-windows: 8-bit CUDA functions for PyTorch in Windows 10

相关文章:

深度学习环境搭建 cuda、模型量化bitsandbytes安装教程 windows、linux

cuda、cudann、conda安装教程 输入以下命令,查看 GPU 支持的最高 CUDA 版本。 nvidia-smi cuda安装(cudatoolkit) 前往 Nvidia 的 CUDA 官网:CUDA Toolkit Archive | NVIDIA Developer CUDA Toolkit 11.8 Downloads | NVIDIA …...

pythond assert 0 <= colx < X12_MAX_COLS AssertionError

python使用xlrd读取excel时&#xff0c;报错&#xff1a; assert 0 < colx < X12_MAX_COLS AssertionError 大意是excel列太多了。主要是xlrd库的问题。最好的方法是不用它&#xff0c;但是我用的其他人提供的工具用到它&#xff0c;没法改。 尝试手动删除excel的列&am…...

js简介以及在html中的2种使用方式(hello world)

简介 javascript &#xff1a;是一个跨平台的脚本语言&#xff1b;是一种轻量级的编程语言。 JavaScript 是 Web 的编程语言。所有现代的 HTML 页面都使用 JavaScript。 HTML&#xff1a; 结构 css&#xff1a; 表现 JS&#xff1a; 行为 HTMLCSS 只能称之为静态网页&#xff0…...

vsCode使用cuda

一、vsCode使用cuda 前情提要&#xff1a;配置好mingw&#xff1a; 1.安装cuda 参考&#xff1a; **CUDA Toolkit安装教程&#xff08;Windows&#xff09;&#xff1a;**https://blog.csdn.net/qq_42951560/article/details/116131410 2.在vscode中添加includePath c_cp…...

ubuntu无法使用apt命令时怎么安装库

如题 因为某些原因&#xff0c;不能直接联网使用apt命令安装库。只能手动去ubuntu镜像源里 找对应的包的deb安装文件 镜像源地址&#xff08;适用于AMD64架构,就是常见的PC的X86-64啦&#xff09; 镜像源地址&#xff08;适用于ARM64,armhf,ppc64el,riscv64,s390x架构&#xff…...

防火墙firewall

一、什么是防火墙 二、iptables 1、iptables介绍 2、实验 138的已经被拒绝&#xff0c;1可以 三、firewalld 1、firewalld简介 关闭iptables&#xff0c;开启firewalld&#xff0c;curl不能使用&#xff0c;远程连接ssh可以使用 添加80端口 这样写也可以&#xff1a;添加http…...

拿来即用,自己封装的 axios

文章目录 一、需求二、分析1. 安装axios2. 新建一个 ts 文件&#xff0c;封装 axios3. store 存放 token 信息4. 使用5. 文件 type.js 一、需求 在日常开发中&#xff0c;我们会经常用到 axios &#xff0c;那么如何在自己的项目中自己封装 axios 二、分析 1. 安装axios np…...

Hadoop小结(下)

HDFS 集群 HDFS 集群是建立在 Hadoop 集群之上的&#xff0c;由于 HDFS 是 Hadoop 最主要的守护进程&#xff0c;所以 HDFS 集群的配置过程是 Hadoop 集群配置过程的代表。 使用 Docker 可以更加方便地、高效地构建出一个集群环境。 每台计算机中的配置 Hadoop 如何配置集群…...

使用老北鼻AI免费GPT对话解决gun make安装和解析iso9660的问题

在学习解析ISO9660镜像文件时&#xff0c;使用了GPT来了解相关的库和gun make编译器的相关知识。这个过程可真是一言难尽&#xff0c;每个问题的回答都模棱两可都需要去证实&#xff0c;不能直接复制粘贴&#xff0c;也不能说GPT的回答一点用也没有&#xff0c;至少GPT给出了一…...

shell脚本语句

一、语句 一、条件语句 一、以用户为例演示 一、显示当前登录系统的用户信息 w命令 二、显示有多少个用户 w | wc -l 显示有7个用户 前两个是固定标题&#xff0c;从第三个开始才是登录用户&#xff0c;所以要统计数量需要 命令&#xff1a;echo $[$(w | wc -l) -2] 显示…...

【LeetCode】2235.两整数相加

题目 给你两个整数 num1 和 num2&#xff0c;返回这两个整数的和。 示例 1&#xff1a; 输入&#xff1a;num1 12, num2 5 输出&#xff1a;17 解释&#xff1a;num1 是 12&#xff0c;num2 是 5 &#xff0c;它们的和是 12 5 17 &#xff0c;因此返回 17 。示例 2&…...

springboot sl4j2 写入日志到mysql

问题描述 springboot初始化的时候&#xff0c;会先初始化日志然后再加载数据源如果用配置文件进行初始化&#xff0c;那么会出现数据源没有加载成功&#xff0c;导致空指针异常 报错排查如下&#xff1a; 搜索报错信息&#xff0c;OBjects.invoke is Null打断点发现。dataso…...

用 PyTorch 编写分布式应用程序

用 PyTorch 编写分布式应用程序 在这个简短的教程中&#xff0c;我们将介绍 PyTorch 的分布式软件包。 我们将了解如何设置分布式设置&#xff0c;使用不同的交流策略以及如何仔细查看软件包的内部结构。 设定 PyTorch 中包含的分布式软件包(即torch.distributed&#xff09…...

空间分析专属 Python 学习资料

空间数据分析能够帮助我们更好地理解地理空间中的模式和关系&#xff0c;从而为决策提供支持。例如&#xff0c;城市规划者可以使用空间数据分析来确定城市发展的最佳方向&#xff0c;环境科学家可以使用空间数据分析来评估污染的影响&#xff0c;而商业分析师可以使用空间数据…...

2. Linux Server 20.04 Qt5.14.2配置Jetson Orin Nano Developer Kit 交叉编译环境

最近公司给了我一块Jetson Orin Nano的板子&#xff0c;先刷了系统&#xff08;1.Jetson Orin Nano Developer Kit系统刷机&#xff09;又让我搭建交叉编译环境&#xff0c;所以有了下面的文章 一 :Qt5.14.2交叉编译环境安装 1.准备 1.1设备环境 1.1.1 Server: Ubuntu20.0…...

vue入门

Attribute 绑定 v-bind:取值方式 开发前准备 安装node.js需要高于15.0 创建vue项目 npm init vuelatest安装 npm install 启动 npm run dev模板语法 文本插值 {{ 变量 }} <p> {{ mesg }} </p>这种方式公支持单一表达式&#xff0c;也可以是js代码&#xf…...

区块链中slot、epoch、以及在slot和epoch中的出块机制,分叉原理(自己备用)

以太坊2.0中有两个时间概念&#xff1a;时隙槽slot 和 时段&#xff08;周期&#xff09;epoch。其中一个slot为12秒&#xff0c;而每个 epoch 由 32 个 slots 组成&#xff0c;所以每个epoch共384秒&#xff0c;也就是 6.4 分钟。 对于每个epoch&#xff0c;使用RANDAO伪随机…...

免费开源的vue+express搭建的后台管理系统

此项目已开源 前端git地址&#xff1a;exp后台管理系统前端: exp后台管理系统前端 后端git地址&#xff1a;express后台管理系统: express后台管理系统 安装运行 npm i yarn i 前端: npm run dev | yarn dev 后端: npm run start | yarn start 主要技术栈 前端后端名称版本名…...

【开发】视频云存储EasyCVR视频汇聚平台AI智能算法定制

安防视频集中存储EasyCVR视频汇聚平台&#xff0c;可支持海量视频的轻量化接入与汇聚管理。平台能提供视频存储磁盘阵列、视频监控直播、视频轮播、视频录像、云存储、回放与检索、智能告警、服务器集群、语音对讲、云台控制、电子地图、平台级联、H.265自动转码等功能。为了便…...

Ribbon:负载均衡及Ribbon

什么是负载均衡&#xff1f; 第一种轮询算法&#xff0c;依次遍历去执行&#xff0c;达到负载均衡 集成Ribbon 导入pom&#xff0c;在消费者服务里的pom文件导入 <!-- Ribbon 集成 --><!-- https://mvnrepository.com/artifact/org.springframework.cloud/spr…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

Python网页自动化Selenium中文文档

1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API&#xff0c;让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API&#xff0c;你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...

AD学习(3)

1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分&#xff1a; &#xff08;1&#xff09;PCB焊盘&#xff1a;表层的铜 &#xff0c;top层的铜 &#xff08;2&#xff09;管脚序号&#xff1a;用来关联原理图中的管脚的序号&#xff0c;原理图的序号需要和PCB封装一一…...

C++--string的模拟实现

一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现&#xff0c;其目的是加强对string的底层了解&#xff0c;以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量&#xff0c;…...

day51 python CBAM注意力

目录 一、CBAM 模块简介 二、CBAM 模块的实现 &#xff08;一&#xff09;通道注意力模块 &#xff08;二&#xff09;空间注意力模块 &#xff08;三&#xff09;CBAM 模块的组合 三、CBAM 模块的特性 四、CBAM 模块在 CNN 中的应用 一、CBAM 模块简介 在之前的探索中…...