当前位置: 首页 > news >正文

【论文解读】Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking

因为Hybrid-SORT的baseline是基于OCSORT进行改进的,在这之前建议先了解byteTrack和【】的相关知识

1.介绍

1.1 基本框架

多目标跟踪(MOT)将问题分为两个子任务。第一个任务是检测每个帧中的对象。第二个任务是将它们在不同的框架中联系起来。关联任务主要通过显式或隐式地利用强线索来解决,包括空间和外观信息。

1.2 当前方法的局限性

当两个物体在当前帧中高度重叠时,检测和估计轨迹位置之间的交集(IoU)会变得模糊,两个物体的外观特征都被前景特征所主导。

2. Hybrid-SORT

修改了当前最先进的SORT-like算法OCSORT作为我们的强基线。首先,对OC-SORT中的速度方向建模进行修正,即以观测为中心的动量(OCM),将盒中心扩展到四个盒角,将固定的时间间隔扩展到多个时间间隔;其次,我们在ByteTrack之后加入了一个额外的低置信度检测关联阶段。

2.1 弱条件建模

2.1.1 Tracklet 置信度建模

 增加了两个额外的状态:轨迹置信度c及其速度分量\dot{c}

如下图所示,Kalman Filter在试图估计置信状态的突然变化时表现出明显的滞后,且置信度状态的变化趋势呈现出明显方向性

 基于以上特点,因此本文使用基于轨迹历史的简单线性预测来估计轨迹置信度

 置信度代价计算为根据式4估计的轨迹置信度\widehat{c}_{trk}与检测置信度c_{det}之间的绝对差值

2.1.2 Height Modulated IoU(HMIOU)

引入height状态有助于提高association :

(1)物体的高度在一定程度上反映了深度信息,使得高度状态成为区分高度重叠对象的有效线索。

(2)其次,高度状态对不同姿态具有较强的鲁棒性,是一种准确估计的状态,是物体的高质量表征。

公式化表述为:

HIoU代表高度状态,这是一个弱线索,而IoU代表空间信息,这是一个强线索,我们使用HIoU来调制IoU,实现对遮挡或聚类对象的增强识别

2.2 Hybrid-SORT

2.2.1 Robust OCM

2.2.1.1 原始OCM存在的局限性

 原始OCM的建模容易受到固定时间间隔和稀疏状态(即只有目标中心)引起的噪声的影响。

2.2.1.2 Robust OCM

  • 首先,将3帧的固定时间间隔扩展为1 ~ 3的多个时间间隔的叠加;
  • 其次,我们用物体的四个角代替它的中心点来计算速度方向。

避免由于姿态的突然变化,轨迹和轨迹到检测中心的速度方向可能完全相反,从而导致匹配错误

 

2.2.2 外观建模

 首先检测对象,然后将结果裁剪的补丁提供给ReID模型。我们使用指数移动平均(EMA)对轨迹图外观信息建模,并利用余弦距离作为度量来计算轨迹图外观特征与检测外观特征之间的相似度。

2.2.3 算法架构

关联阶段主要包括三个阶段:第一阶段是高置信度对象的关联阶段,第二阶段是低置信度对象的关联阶段(ByteTrack中的BYTE),第三阶段是用最后一次检测恢复丢失的轨迹(OC-SORT中的OCR)。

3.代码

3.1 卡尔曼滤波器KalmanBoxTracker建模

3.1.1 引入轨迹置信度c及其速度分量\dot{c}·

        if not orig:from .kalmanfilter_score_new import KalmanFilterNew_score_new as KalmanFilter_score_newself.kf = KalmanFilter_score_new(dim_x=9, dim_z=5)

3.1.2 轨迹置信度的预测

简单线性预测来估计轨迹置信度

        if not self.confidence_pre:return self.history[-1], np.clip(self.kf.x[3], self.args.track_thresh, 1.0),np.clip(self.confidence, 0.1, self.args.track_thresh)else:return self.history[-1], np.clip(self.kf.x[3], self.args.track_thresh, 1.0), np.clip(self.confidence - (self.confidence_pre - self.confidence), 0.1, self.args.track_thresh)

返回值分别是 分别是九位预测量,置信度预测值,置信度的速度分量\dot{c}·

3.2 Robust OCM

3.2.1 四个角代替它的中心点

 lt, rt, lb, rb : 代表bbox四个角点的速度

    Y1, X1 = speed_direction_batch_lt(detections, previous_obs)Y2, X2 = speed_direction_batch_rt(detections, previous_obs)Y3, X3 = speed_direction_batch_lb(detections, previous_obs)Y4, X4 = speed_direction_batch_rb(detections, previous_obs)cost_lt = cost_vel(Y1, X1, trackers, lt, detections, previous_obs, vdc_weight)cost_rt = cost_vel(Y2, X2, trackers, rt, detections, previous_obs, vdc_weight)cost_lb = cost_vel(Y3, X3, trackers, lb, detections, previous_obs, vdc_weight)cost_rb = cost_vel(Y4, X4, trackers, rb, detections, previous_obs, vdc_weight)angle_diff_cost = cost_lt + cost_rt + cost_lb + cost_rb

speed_direction_batch_XX用来计算四个角点的速度

cost_vel 用来计算某个交点速度的cost

3.3 Height Modulated IoU(HMIOU)

def hmiou(bboxes1, bboxes2):"""Height_Modulated_IoU"""bboxes2 = np.expand_dims(bboxes2, 0)bboxes1 = np.expand_dims(bboxes1, 1)yy11 = np.maximum(bboxes1[..., 1], bboxes2[..., 1])yy12 = np.minimum(bboxes1[..., 3], bboxes2[..., 3])yy21 = np.minimum(bboxes1[..., 1], bboxes2[..., 1])yy22 = np.maximum(bboxes1[..., 3], bboxes2[..., 3])o = (yy12 - yy11) / (yy22 - yy21)xx1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0])yy1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1])xx2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2])yy2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3])w = np.maximum(0., xx2 - xx1)h = np.maximum(0., yy2 - yy1)wh = w * ho *= wh / ((bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1])+ (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1]) - wh)return (o)

相关文章:

【论文解读】Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking

因为Hybrid-SORT的baseline是基于OCSORT进行改进的,在这之前建议先了解byteTrack和【】的相关知识 1.介绍 1.1 基本框架 多目标跟踪(MOT)将问题分为两个子任务。第一个任务是检测每个帧中的对象。第二个任务是将它们在不同的框架中联系起来。关联任务主要通过显式…...

Microsoft 图像BERT,基于大规模图文数据的跨模态预训练

视觉语言任务是当今自然语言处理(NLP)和计算机视觉领域的热门话题。大多数现有方法都基于预训练模型,这些模型使用后期融合方法融合下游任务的多模态输入。然而,这种方法通常需要在训练期间进行特定的数据注释,并且对于…...

vue3+elementUI-plus实现select下拉框的虚拟滚动

网上查了几个方案,要不就是不兼容,要不就是不支持vue3, 最终找到一个合适的,并且已上线使用,需要修改一下样式: 代码如下: main.js里引用 import vue3-virtual-scroller/dist/vue3-virtual-scroller.css; …...

学C的第三十四天【程序环境和预处理】

相关代码gitee自取: C语言学习日记: 加油努力 (gitee.com) 接上期: 学C的第三十三天【C语言文件操作】_高高的胖子的博客-CSDN博客 1 . 程序的翻译环境和执行环境 在ANSI C(C语言标准)的任何一种实现中,存在两个不同的环境。 &#xff0…...

微服务中间件--Ribbon负载均衡

Ribbon负载均衡 a.Ribbon负载均衡原理b.Ribbon负载均衡策略 (IRule)c.Ribbon的饥饿加载 a.Ribbon负载均衡原理 1.发起请求http://userservice/user/1,Ribbon拦截该请求 2.Ribbon通过EurekaServer拉取userservice 3.EurekaServer返回服务列表给Ribbon做负载均衡 …...

字符设备驱动实例(ADC驱动)

四、ADC驱动 ADC是将模拟信号转换为数字信号的转换器,在 Exynos4412 上有一个ADC,其主要的特性如下。 (1)量程为0~1.8V。 (2)精度有 10bit 和 12bit 可选。 (3)采样时钟最高为5MHz,转换速率最高为1MSPS (4)具有四路模拟输入,同一时…...

python基础5——正则、数据库操作

文章目录 一、数据库编程1.1 connect()函数1.2 命令参数1.3 常用语句 二、正则表达式2.1 匹配方式2.2 字符匹配2.3 数量匹配2.4 边界匹配2.5 分组匹配2.6 贪婪模式&非贪婪模式2.7 标志位 一、数据库编程 可以使用python脚本对数据库进行操作,比如获取数据库数据…...

SpringAOP原理:手写动态代理实现

0、基础知识 AOP我们知道,是在不修改源代码的情况下,为代码添加一些新功能的技术。通过动态代理,可以在不修改原始类代码的前提下,对方法进行拦截和增强。 动态代理常用于在不改变原有业务逻辑的情况下,对方法…...

【旅游度假】Axure酒店在线预订APP原型图 旅游度假子模块原型模板

作品概况 页面数量:共 10 页 兼容软件:Axure RP 9/10,不支持低版本 应用领域:旅游度假,生活服务 作品申明:页面内容仅用于功能演示,无实际功能 作品特色 本作品为「酒店在线预订」的移动端…...

Android JNI系列详解之CMake和ndk-build编译工具介绍

一、前提 CMake和ndk-build只是编译工具,本次主要介绍ndk-build和CMake的区别,下节课介绍他们的使用。 二、CMake工具介绍 CMake:cross platform make,是跨平台的编译工具 CMake是在AndroidStudio2.2之后引入(目前默认…...

【Linux取经路】解析环境变量,提升系统控制力

文章目录 一、进程优先级1.1 什么是优先级?1.2 为什么会有优先级?1.3 小结 二、Linux系统中的优先级2.1 查看进程优先级2.2 PRI and NI2.3 修改进程优先级2.4 进程优先级的实现原理2.5 一些名词解释 三、环境变量3.1 基本概念3.2 PATH:Linux系…...

TCP编程流程(补充)

目录 1、listen: 2、listen、tcp三次握手 3、 发送缓冲区和接收缓冲区: 4、tcp编程启用多线程 1、listen: 执行listen会创建一个监听队列 listen(sockfd,5) 2、listen、tcp三次握手 三次握手 3、 发送缓冲区和接收缓冲区:…...

每天一道leetcode:433. 最小基因变化(图论中等广度优先遍历)

今日份题目: 基因序列可以表示为一条由 8 个字符组成的字符串,其中每个字符都是 A、C、G 和 T 之一。 假设我们需要调查从基因序列 start 变为 end 所发生的基因变化。一次基因变化就意味着这个基因序列中的一个字符发生了变化。 例如,&quo…...

【C++】做一个飞机空战小游戏(十)——子弹击落炮弹、炮弹与飞机相撞

[导读]本系列博文内容链接如下: 【C】做一个飞机空战小游戏(一)——使用getch()函数获得键盘码值 【C】做一个飞机空战小游戏(二)——利用getch()函数实现键盘控制单个字符移动【C】做一个飞机空战小游戏(三)——getch()函数控制任意造型飞机图标移动 【C】做一个飞…...

去除UI切图边缘上多余的线条

最近接到UI切图,放进项目,显示边缘有多余线条,影响UI美观。开始以为切图没切好,实则不是。如图: ->解决: 将该图片资源WrapMode改为Clamp...

Spring高手之路13——BeanFactoryPostProcessor与BeanDefinitionRegistryPostProcessor解析

文章目录 1. BeanFactoryPostProcessor 概览1.1 解读 BeanFactoryPostProcessor1.2. 如何使用 BeanFactoryPostProcessor 2. BeanDefinitionRegistryPostProcessor 深入探究2.1 解读 BeanDefinitionRegistryPostProcessor2.2 BeanDefinitionRegistryPostProcessor 的执行时机2.…...

【LeetCode动态规划】详解买卖票I~IV,经典dp题型买

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从这笔交易中获取的最大利润。…...

【深入探究人工智能】:常见机器学习算法总结

文章目录 1、前言1.1 机器学习算法的两步骤1.2 机器学习算法分类 2、逻辑回归算法2.1 逻辑函数2.2 逻辑回归可以用于多类分类2.3 逻辑回归中的系数 3、线性回归算法3.1 线性回归的假设3.2 确定线性回归模型的拟合优度3.3线性回归中的异常值处理 4、支持向量机(SVM&a…...

设计模式之解释器模式详解及实例

1、解释器设计模式概述: 解释器模式(Interpreter Pattern)是一种设计模式,它主要用于描述如何构建一个解释器以解释特定的语言或表达式。该模式定义了一个文法表示和解释器的类结构,用于解释符合该文法规则的语句。解…...

Nodejs沙箱逃逸--总结

一、沙箱逃逸概念 JavaScript和Nodejs之间有什么区别:JavaScript用在浏览器前端,后来将Chrome中的v8引擎单独拿出来为JavaScript单独开发了一个运行环境,因此JavaScript也可以作为一门后端语言,写在后端(服务端&#…...

OpenLayers 可视化之热力图

注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

LLM基础1_语言模型如何处理文本

基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备,并且图标都没了 错误案例 往上一顿搜索,试了很多博客都不行,比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动,重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

针对药品仓库的效期管理问题,如何利用WMS系统“破局”

案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...

13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析

LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...

背包问题双雄:01 背包与完全背包详解(Java 实现)

一、背包问题概述 背包问题是动态规划领域的经典问题,其核心在于如何在有限容量的背包中选择物品,使得总价值最大化。根据物品选择规则的不同,主要分为两类: 01 背包:每件物品最多选 1 次(选或不选&#…...

Unity-ECS详解

今天我们来了解Unity最先进的技术——ECS架构(EntityComponentSystem)。 Unity官方下有源码,我们下载源码后来学习。 ECS 与OOP(Object-Oriented Programming)对应,ECS是一种完全不同的编程范式与数据架构…...

人工智能--大型语言模型的存储

好的,我现在需要回答用户关于GGUF文件和safetensors文件后缀的差别的问题。首先,我得先确认这两个文件格式的具体应用场景和它们各自的优缺点。用户可能是在处理大模型时遇到了这两种文件格式,想了解它们的区别以便正确使用。 首先&#xff…...