matlab使用教程(17)—广度优先和深度优先搜索
1.可视化广度优先搜索和深度优先搜索

将 visualize_search.m 保存在当前文件夹中。
function visualize_search(G,t)
% G is a graph or digraph object, and t is a table resulting from a call to
% BFSEARCH or DFSEARCH on that graph.
%
% Example inputs: G = digraph([1 2 3 3 3 3 4 5 6 7 8 9 9 9 10], ...
% [7 6 1 5 6 8 2 4 4 3 7 1 6 8 2]);
% t = dfsearch(G, 1, 'allevents', 'Restart', true);
% Copyright 1984-2019 The MathWorks, Inc.
isundirected = isa(G, 'graph');
if isundirected
% Replace graph with corresponding digraph, because we need separate
% edges for both directions
[src, tgt] = findedge(G);
G = digraph([src; tgt], [tgt; src], [1:numedges(G), 1:numedges(G)]);
end
h = plot(G,'NodeColor',[0.5 0.5 0.5],'EdgeColor',[0.5 0.5 0.5], ...
'EdgeLabelMode', 'auto');
for ii=1:size(t,1)
switch t.Event(ii)
case 'startnode'
highlight(h,t.Node(ii),'MarkerSize',min(h.MarkerSize)*2);
case 'discovernode'
highlight(h,t.Node(ii),'NodeColor','r');
case 'finishnode'
highlight(h,t.Node(ii),'NodeColor','k');
otherwise
if isundirected
a = G.Edges.Weight;
b = t.EdgeIndex(ii);
edgeind = intersect(find(a == b),...
findedge(G,t.Edge(ii,1),t.Edge(ii,2)));
else
edgeind = t.EdgeIndex(ii);
end
switch t.Event(ii)
case 'edgetonew'
highlight(h,'Edges',edgeind,'EdgeColor','b');
case 'edgetodiscovered'
highlight(h,'Edges',edgeind,'EdgeColor',[0.8 0 0.8]);
case 'edgetofinished'
highlight(h,'Edges',edgeind,'EdgeColor',[0 0.8 0]);
end
endnodeStr = t.Node;
if isnumeric(nodeStr)
nodeStr = num2cell(nodeStr);
nodeStr = cellfun(@num2str, nodeStr, 'UniformOutput', false);
endedgeStr = t.Edge;
if isnumeric(edgeStr)
edgeStr = num2cell(edgeStr);
edgeStr = cellfun(@num2str, edgeStr, 'UniformOutput', false);
endif ~isnan(t.Node(ii))
title([char(t{ii, 1}) ' on Node ' nodeStr{ii}]);
else
title([char(t{ii, 1}) ' on Edge (' edgeStr{ii, 1} ', '...
edgeStr{ii, 2},') with edge index ' sprintf('%d ', t{ii, 4})]);
enddisp('Strike any key to continue...')
pause
end
disp('Done.')
close all
2.使用拉普拉斯矩阵为图分区
2.1 加载数据
2.2 绘制图

2.3 计算拉普拉斯矩阵和 Fiedler 向量
2.4 为图分区
对于该杠铃图而言,此分区恰好将图平分为两个相等的节点集。但符号切割不总是生成平衡切割。任何时候均可通过计算 w 的中位数并将其用作阈值来平分图。这种分区方法被称为中位数切割,它能保证每个子图具有相等的节点数量。使用中位切割时,首先按中位数平移 w 中的值:
3.将节点属性添加到图论图数据提示
3.1 绘制具有数据提示的 GraphPlot 对象
3.2 自定义数据提示中的现有数据
3.3 将数据添加到数据提示
3.4 从数据提示中删除数据
数据提示显示现在只显示城市编号和 Wi-Fi 状态。
4.为图节点和边添加标签
4.1 创建并绘制图
4.2 添加节点标签
4.3 添加边标签
4.4 调整字体属性

4.5 突出显示边

相关文章:

matlab使用教程(17)—广度优先和深度优先搜索
1.可视化广度优先搜索和深度优先搜索 此示例说明如何定义这样的函数:该函数通过突出显示图的节点和边来显示 bfsearch 和 dfsearch 的可视化结果。 创建并绘制一个有向图。 s [1 2 3 3 3 3 4 5 6 7 8 9 9 9 10]; t [7 6 1 5 6 8 2 4 4 3 7 1 6 8 2]; G dig…...
CSerialPort教程4.3.x (2) - CSerialPort源码简介
CSerialPort教程4.3.x (2) - CSerialPort源码简介 前言 CSerialPort项目是一个基于C/C的轻量级开源跨平台串口类库,可以轻松实现跨平台多操作系统的串口读写,同时还支持C#, Java, Python, Node.js等。 CSerialPort项目的开源协议自 V3.0.0.171216 版本…...

【数据结构OJ题】有效的括号
原题链接:https://leetcode.cn/problems/valid-parentheses/ 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 这道题目主要考查了栈的特性: 题目的意思主要是要做到3点匹配:类型、顺序、数量。 题目给的例子是比较…...

Java性能分析中常用命令和工具
当涉及到 Java 性能分析时,有一系列强大的命令和工具可以帮助开发人员分析应用程序的性能瓶颈、内存使用情况和线程问题。以下是一些常用的 Java 性能分析命令和工具,以及它们的详细说明和示例。 以下是一些常用的性能分析命令和工具汇总: …...

JVM性能分析-jstat工具观察gc频率
jstat jstat是java自带的工具,在bin目录下 用法 语法:jstat -<option> [-t] [-h<lines>] <vmid> [<interval> [<count>]] [kqkyyj-2 bin]$ jstat -help Usage: jstat -help|-optionsjstat -<option> [-t] [-h&l…...
mysql 查询报错 1267 - Illegal mix of collations
mysql 查询报错 1267 - Illegal mix of collations 详细报错: 1267 - Illegal mix of collations (utf8mb4_0900_ai_ci,IMPLICIT) and (utf8mb4_unicode_ci,IMPLICIT) for 主要的原因其实就是两张表的字符集不一样改一下就行了。 注: 改了表还是报错的话,那就是表内的字段没有…...
【ARM】Day6
cotex-A7核UART总线实验 1. 键盘输入一个字符‘a’,串口工具显示‘b’ 2. 键盘输入一个字符串"nihao",串口工具显示“nihao” uart.h #ifndef __UART4_H__ #define __UART4_H__#include "stm32mp1xx_rcc.h" #include "stm3…...
深入理解Flink Mailbox线程模型
文章目录 整体设计processMail1.Checkpoint Tigger2.ProcessingTime Timer Trigger processInput兼容SourceStreamTask 整体设计 Mailbox线程模型通过引入阻塞队列配合一个Mailbox线程的方式,可以轻松修改StreamTask内部状态的修改。Checkpoint、ProcessingTime Ti…...

Docker搭建LNMP运行Wordpress平台
一、项目1.1 项目环境1.2 服务器环境1.3 任务需求 二、Linux 系统基础镜像三、Nginx1、建立工作目录2、编写 Dockerfile 脚本3、准备 nginx.conf 配置文件4、生成镜像5、创建自定义网络6、启动镜像容器7、验证 nginx 四、Mysql1、建立工作目录2、编写 Dockerfile3、准备 my.cnf…...
10个常见渐变交互效果
1、透明度渐变背景交互 <div class"fade-background"></div> Copy .fade-background {width: 200px;height: 200px;background: linear-gradient(to bottom, rgba(255, 0, 0, 0), rgba(255, 0, 0, 1));transition: background 0.5s ease; }.fade-backgro…...

[线程/C]基础
文章目录 1. 线程介绍2. 创建线程2.1 线程函数2.2 创建线程 3. 线程退出4. 线程回收4.1 线程函数4.2 回收子线程数据4.2.1 使用子线程栈4.2.2 使用全局变量4.2.3 使用主线程栈 5. 线程分离6. 其他线程函数6.1 线程取消6.2 线程ID的比较 1. 线程介绍 线程是轻量级的进程&#x…...

Spring Clould 负载均衡 - Ribbon
视频地址:微服务(SpringCloudRabbitMQDockerRedis搜索分布式) Ribbon-负载均衡原理(P14) 具体实现时通过LoaBalanced注解实现,表示RestTemplate要被Ribbon拦截处理 orderservice调用user时候,…...
活用DNS技术实现相同IP的不同端口映射不同域名
WindowsDNS基本配置 在内网的 Windows 服务器环境中,你可以通过配置 DNS 服务和 Web 服务器来实现所需的域名解析和端口转发。如下是一些基本的步骤来实现配置: 1,配置 Windows DNS 服务 在你的 Windows 服务器上配置 DNS 服务,…...

AutoHotkey:定时删除目录下指定分钟以前的文件,带UI界面
删除指定目录下,所有在某个指定分钟以前的文件,可以用来清理经常生成很多文件的目录,但又需要保留最新的一部分文件 支持拖放目录到界面 能够记忆设置,下次启动后不用重新设置,可以直接开始 应用场景比如:…...
一文学会sklearn中的交叉验证的方法
前言 在机器学习中,我们经常需要评估模型的性能。而为了准确评估模型的性能,我们需要使用一种有效的评估方法。五折交叉验证(5-fold cross-validation)就是其中一种常用的模型评估方法,用于评估机器学习模型的性能和泛…...

【MySQL面试题(66道)】
文章目录 MySQL面试题(66道)基础1.什么是内连接、外连接、交叉连接、笛卡尔积呢?2.那 MySQL 的内连接、左连接、右连接有有什么区别?3.说一下数据库的三大范式?4.varchar 与 char 的区别?5.blob 和 text 有什么区别?6.…...

CSSCI、北核期刊投稿指南(2023年更新)
该数据为经管类的期刊投稿指南,包含发表难度,文章数量,影响因子,用户评价等指标。共5份文件,分别为国内所有期刊信息库、投稿指南(CSSCI版本、CSSCI扩展版本、北大核刊版本、建议期刊版本) 一、…...

构建 NodeJS 影院微服务并使用 docker 部署它(02/4)
一、说明 构建一个微服务的电影网站,需要Docker、NodeJS、MongoDB,这样的案例您见过吗?如果对此有兴趣,您就继续往下看吧。 图片取自网络 — 封面由我制作 这是✌️“构建 NodeJS 影院微服务”系列的第二篇文章。 二、对第一部分的…...
HTML <style> 标签
实例 <html> <head> <style type="text/css"> h1 {color:red} p {color:blue} </style> </head><body> <h1>Header 1</h1> <p>A paragraph.</p> </body> </html>定义和用法 <style>…...
设计模式——迪米特法则
文章目录 基本介绍应用实例应用实例改进迪米特法则注意事项和细节 基本介绍 一个对象应该对其他对象保持最少的了解类与类关系越密切,耦合度越大迪米特法则(Demeter Principle)又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说&#x…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...