当前位置: 首页 > news >正文

【nodejs】用Node.js实现简单的壁纸网站爬虫

1. 简介

在这个博客中,我们将学习如何使用Node.js编写一个简单的爬虫来从壁纸网站获取图片并将其下载到本地。我们将使用Axios和Cheerio库来处理HTTP请求和HTML解析。

2. 设置项目

首先,确保你已经安装了Node.js环境。然后,我们将创建一个新的文件夹,初始化项目并安装所需的依赖库:

Copy code
mkdir wallpaper-scraper
cd wallpaper-scraper
npm init -y
npm install axios cheerio
  1. 编写爬虫代码

在项目文件夹中,创建一个名为scraper.js的文件,并将你提供的代码复制粘贴进去。

const axios = require('axios');
const cheerio = require('cheerio');
const fs = require('fs');const baseUrl = 'http://www.netbian.com/';
const page = 3;const pachong = async () => {const imgList = [];for (let i = 0; i < page; i++) {const res = await axios.get(`${baseUrl}index${i === 0 ? '' : `_${i + 1}`}.htm`,);const $ = cheerio.load(res.data);const imgList2 = $('.list li a img').toArray().map((item) => {return $(item).attr('src');});imgList.push(...imgList2);}writeFile(imgList);
};const writeFile = async (urls) => {urls.forEach(async (item) => {try {const res = await axios.get(item, { responseType: 'arraybuffer' });const imgBuffer = Buffer.from(res.data, 'binary');await fs.promises.writeFile(`./img/${new Date().getTime()}.jpg`,imgBuffer,);console.log('写入成功 --- ' + item);} catch (error) {console.log('写入失败 --- ' + error);}});
};pachong();

4. 运行爬虫

现在,你可以在命令行中运行爬虫脚本:

node scraper.js

脚本会自动爬取壁纸网站的图片并将它们下载到一个名为img的文件夹中。每张图片将使用当前时间戳作为文件名,以确保唯一性。
在这里插入图片描述

5. 注意事项

确保遵守网站的使用条款和条件。不要过度请求或滥用网站,以免造成不必要的麻烦。
代码中使用的选择器、URL结构等可能会因网站结构的更改而失效。需要根据实际情况进行调整。

相关文章:

【nodejs】用Node.js实现简单的壁纸网站爬虫

1. 简介 在这个博客中&#xff0c;我们将学习如何使用Node.js编写一个简单的爬虫来从壁纸网站获取图片并将其下载到本地。我们将使用Axios和Cheerio库来处理HTTP请求和HTML解析。 2. 设置项目 首先&#xff0c;确保你已经安装了Node.js环境。然后&#xff0c;我们将创建一个…...

xlsx xlsx-style file-saver 导出json数据到excel文件并设置标题字体加粗

xlsx&#xff1a;用于处理Excel文件。xlsx-style&#xff1a;用于添加样式到Excel文件中。file-saver&#xff1a;用于将生成的Excel文件保存到用户的计算机上 npm install xlsx xlsx-style file-saver// 导入所需库 const XLSX require(xlsx); const XLSXStyle require(xls…...

Win11游戏高性能模式怎么开

1、点击桌面任务栏上的“开始”图标&#xff0c;在打开的应用中&#xff0c;点击“设置”&#xff1b; 2、“设置”窗口&#xff0c;左侧找到“游戏”选项&#xff0c;在右侧的选项中&#xff0c;找到并点击打开“游戏模式”&#xff1b; 3、打开的“游戏模式”中&#xff0c;找…...

深度学习最强奠基作ResNet《Deep Residual Learning for Image Recognition》论文解读(上篇)

1、摘要 1.1 第一段 作者说深度神经网络是非常难以训练的&#xff0c;我们使用了一个残差学习框架的网络来使得训练非常深的网络比之前容易得很多。 把层作为一个残差学习函数相对于层输入的一个方法&#xff0c;而不是说跟之前一样的学习unreferenced functions 作者提供了…...

第22次CCF计算机软件能力认证

第一题&#xff1a;灰度直方图 解题思路&#xff1a; 哈希表即可 #include<iostream> #include<cstring>using namespace std;const int N 610; int a[N]; int n , m , l;int main() {memset(a , 0 , sizeof a);cin >> n >> m >> l;for(int …...

Go语言基础之基本数据类型

Go语言中有丰富的数据类型&#xff0c;除了基本的整型、浮点型、布尔型、字符串外&#xff0c;还有数组、切片、结构体、函数、map、通道&#xff08;channel&#xff09;等。Go 语言的基本类型和其他语言大同小异。 基本数据类型 整型 整型分为以下两个大类&#xff1a; 按…...

Linux Tracing Technologies

目录 1. Linux Tracing Technologies 1. Linux Tracing Technologies Linux Tracing TechnologieseBPFXDPDPDK...

iOS自定义下拉刷新控件

自定义下拉刷新控件 概述 用了很多的别人的下拉刷新控件&#xff0c;想写一个玩玩&#xff0c;自定义一个在使用的时候也会比较有意思。使应用更加的灵动一些&#xff0c;毕竟谁不喜欢各种动画恰到好处的应用呢。 使用方式如下&#xff1a; tableview.refreshControl XRef…...

Springboot写单元测试

导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><exclusions><exclusion><groupId>org.junit.vintage</groupId><artifactId>junit-vintag…...

一篇文章教你使用Docker本地化部署Chatgpt(非api,速度非常快!!!)及裸连GPT的方式(告别镜像GPT)

本地搭建ChatGPT&#xff08;非api调用&#xff09; 第一种方法&#xff1a;使用Docker本地化部署第一步&#xff0c;下载安装Docker登录GPT 第二种方法&#xff1a;不部署项目&#xff0c;直接连接 第一种方法&#xff1a;使用Docker本地化部署 这种方法的好处就是没有登录限…...

前馈神经网络dropout实例

直接看代码。 &#xff08;一&#xff09;手动实现 import torch import torch.nn as nn import numpy as np import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt#下载MNIST手写数据集 mnist_train torchvision.datasets.MN…...

Android DataStore:安全存储和轻松管理数据

关于作者&#xff1a;CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、人工智能等&#xff0c;希望大家多多支持。 目录 一、导读二、概览三、使用3.1 Preferences DataStore添加依赖数据读…...

opencv进阶12-EigenFaces 人脸识别

EigenFaces 通常也被称为 特征脸&#xff0c;它使用主成分分析&#xff08;Principal Component Analysis&#xff0c;PCA&#xff09; 方法将高维的人脸数据处理为低维数据后&#xff08;降维&#xff09;&#xff0c;再进行数据分析和处理&#xff0c;获取识别结果。 基本原理…...

The internal rate of return (IRR)

内部收益率 NPV(Net Present Value)_spencer_tseng的博客-CSDN博客...

半导体自动化专用静电消除器主要由哪些部分组成

半导体自动化专用静电消除器是一种用于消除半导体生产过程中的静电问题的设备。由于半导体制造过程中对静电的敏感性&#xff0c;静电可能会对半导体器件的质量和可靠性产生很大的影响&#xff0c;甚至造成元件损坏。因此&#xff0c;半导体生产中采用专用的静电消除器是非常重…...

【C++入门到精通】C++入门 —— deque(STL)

阅读导航 前言一、deque简介1. 概念2. 特点 二、deque使用1. 基本操作&#xff08;增、删、查、改&#xff09;2. 底层结构 三、deque的缺陷四、 为什么选择deque作为stack和queue的底层默认容器总结温馨提示 前言 文章绑定了VS平台下std::deque的源码&#xff0c;大家可以下载…...

Codeforces Round 893 (Div. 2) D.Trees and Segments

原题链接&#xff1a;Problem - D - Codeforces 题面&#xff1a; 大概意思就是让你在翻转01串不超过k次的情况下&#xff0c;使得a*&#xff08;0的最大连续长度&#xff09;&#xff08;1的最大连续长度&#xff09;最大&#xff08;1<a<n&#xff09;。输出n个数&…...

SpringBoot + Vue 前后端分离项目 微人事(九)

职位管理后端接口设计 在controller包里面新建system包&#xff0c;再在system包里面新建basic包&#xff0c;再在basic包里面创建PositionController类&#xff0c;在定义PositionController类的接口的时候&#xff0c;一定要与数据库的menu中的url地址到一致&#xff0c;不然…...

【业务功能篇71】Cglib的BeanCopier进行Bean对象拷贝

选择Cglib的BeanCopier进行Bean拷贝的理由是&#xff0c; 其性能要比Spring的BeanUtils&#xff0c;Apache的BeanUtils和PropertyUtils要好很多&#xff0c; 尤其是数据量比较大的情况下。 BeanCopier的主要作用是将数据库层面的Entity转化成service层的POJO。BeanCopier其实已…...

让eslint的错误信息显示在项目界面上

1.需求描述 效果如下 让eslint中的错误&#xff0c;显示在项目界面上 2.问题解决 1.安装 vite-plugin-eslint 插件 npm install vite-plugin-eslint --save-dev2.配置插件 // vite.config.js import { defineConfig } from vite import vue from vitejs/plugin-vue import e…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...

对象回调初步研究

_OBJECT_TYPE结构分析 在介绍什么是对象回调前&#xff0c;首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例&#xff0c;用_OBJECT_TYPE这个结构来解析它&#xff0c;0x80处就是今天要介绍的回调链表&#xff0c;但是先不着急&#xff0c;先把目光…...

大模型真的像人一样“思考”和“理解”吗?​

Yann LeCun 新研究的核心探讨&#xff1a;大语言模型&#xff08;LLM&#xff09;的“理解”和“思考”方式与人类认知的根本差异。 核心问题&#xff1a;大模型真的像人一样“思考”和“理解”吗&#xff1f; 人类的思考方式&#xff1a; 你的大脑是个超级整理师。面对海量信…...