【管理运筹学】第 5 章 | 整数规划 (2,割平面法及 0-1 变量的特性)
文章目录
- 引言
- 三、割平面法
- 四、0-1 型整数规划
- 4.1 0-1 变量的特性
- 4.1.1 投资问题
- 4.1.2 约束条件满足个数问题
- 写在最后
引言
前文我们介绍了整数规划的一种求解方法——分支定界法,可以求解纯整数和混合整数规划问题。现在我们来学习另一种整数规划求解方法——割平面法。
接着,我们还会涉及到 0-1 整数规划的一些内容,是整数规划的一种特殊情形。
三、割平面法
割平面法是受整数规划几何解释的启发而形成的,根据前文的讨论,整数规划的最优解一定是在线性规划松弛问题的最优解附近。

那么,是否可以增加一些附加的约束,将松弛问题最优解附近不含整数解的可行域的多余部分分割来对最优解进行搜索呢?下面我们通过例子来感受割平面法的工作原理。
用割平面法求解下列整数规划问题。

解: 用单纯形法求解线性规划松弛问题,得到的最优单纯形表如下:

其松弛问题最优解为 ( x 1 = 3.75 , x 2 = 1.5 , z = 37.5 ) (x_1=3.75,x_2=1.5,z=37.5) (x1=3.75,x2=1.5,z=37.5) 。两个基变量均不满足整数要求。割平面通过加入割约束,来割除多余部分。加入割约束的方法为:
从非整数基变量对应的约束条件中任选一个。假定选取第二个,即 x 1 x_1 x1 在最优单纯性表中对应约束。该约束可表示为: x 1 + 0.125 x 3 + 0.375 x 4 = 3.75 x_1+0.125x_3+0.375x_4=3.75 x1+0.125x3+0.375x4=3.75 将上式所有非整数系数写成一个整数和纯正小数之和,即 x 1 + ( 0 + 0.125 ) x 3 + ( 0 + 0.375 x 4 ) = 3 + 0.75 x_1+(0+0.125)x_3+(0+0.375x_4)=3+0.75 x1+(0+0.125)x3+(0+0.375x4)=3+0.75 接着将所有整数项移到等式右边,小数项移到等式左边,可得: x 1 − 3 = 0.75 − 0.125 x 3 − 0.375 x 4 x_1-3=0.75-0.125x_3-0.375x_4 x1−3=0.75−0.125x3−0.375x4 上式,等式左端为整数,则右端也必须为整数。右端 x 3 , x 4 x_3,x_4 x3,x4 均为非负整数,要求等式右端为整数的话,则等式右端要小于等于 0 ,即 0.75 − 0.125 x 3 − 0.375 x 4 ≤ 0 0.75-0.125x_3-0.375x_4 \leq 0 0.75−0.125x3−0.375x4≤0 整理即 − x 3 − 3 x 4 ≤ − 6 -x_3-3x_4 \leq -6 −x3−3x4≤−6 。将其化为等式,添加到之前的最优单纯形表中,利用对偶单纯形法继续求解,得到最优整数解为 ( x 1 = 2 , x 2 = 3 , z = 34 ) (x_1=2,x_2=3,z=34) (x1=2,x2=3,z=34) 。
新加入的割约束方程不会割除任何整数解,即原问题的所有整数解都满足新增加的割约束。
四、0-1 型整数规划
0-1 型整数规划的变量 x i x_i xi 仅取值 0 或 1 。称 x i x_i xi 为 0-1 变量或二进制变量。这一条件可以用以下约束来代替: x i ≤ 1 , x i ≥ 0 , 整数 x_i \leq 1,x_i \geq0,整数 xi≤1,xi≥0,整数
4.1 0-1 变量的特性
面对实际问题中比如逻辑条件或顺序要求等特殊的约束条件,引入 0-1 变量可以非常巧妙地加以表示。下面讨论几个问题,大家就能感受到了。
4.1.1 投资问题
某投资公司可用于投资的资金总额为 b b b ,有若干个项目可供选择投资,假设其中第 j j j 个项目每年可获取利润 c j c_j cj ,所需要的资金是 a j a_j aj ,问如何建立模型来选定最佳组合的投资项目,以取得最佳利润。
这个问题是比较棘手的,但如果引入一个 0-1 变量,建模就变得较为直观和轻松了。因为每一种项目只有两种状态,因此,令 x j = 1 x_j=1 xj=1 表示投资了第 j j j 个项目, x j = 0 x_j=0 xj=0 表示不投资该项目。可列出如下规划模型:

0-1 变量还可以帮助我们满足现实投资问题中特殊的要求,如下列举了一些例子。
排斥需求—— 某几个项目(假设为第 1,4,5 个项目)中至多只能选一个,约束方程可以表示为 x 1 + x 4 + x 5 ≤ 1. x_1+x_4+x_5 \leq 1. x1+x4+x5≤1.
优先级需求—— 选择了第 2 个项目时,才能考虑选择第 3 个项目,约束可表示为 x 3 ≤ x 2 . x_3 \leq x_2. x3≤x2. 同时选择了第 1,2 个项目时,才能考虑选择第 3 个项目,则约束方程可表示为 2 x 3 ≤ x 1 + x 2 . 2x_3 \leq x_1+x_2. 2x3≤x1+x2.
不可缺需求—— 第 3,4 个项目至少要有一个选择投资,则约束方程可表示为 x 3 + x 4 ≥ 1. x_3+x_4 \geq 1. x3+x4≥1.
4.1.2 约束条件满足个数问题
用下式表示 p p p 个约束条件方程: ∑ j = 1 n a i j x j ≤ b i , i = 1 , 2 , … , p \sum_{j=1}^na_{ij}x_j \leq b_i,i=1,2,\dots,p j=1∑naijxj≤bi,i=1,2,…,p 设 y i y_i yi 为 0-1 变量,如果让第 i i i 个约束条件起作用,则 y i y_i yi 取 1 ,否则取 0 ,即有下式: ∑ j = 1 n a i j x j ≤ b i + ( 1 − y i ) M , i = 1 , 2 , … , p \sum_{j=1}^na_{ij}x_j \leq b_i+(1-y_i)M,i=1,2,\dots,p j=1∑naijxj≤bi+(1−yi)M,i=1,2,…,p 其中, M M M 是很大的整数。此时如何 y i y_i yi 为 0 ,则不等式右端为 b i + M b_i+M bi+M ,显然对任意 x x x 均满足,因此不具有约束力。
若要求必须满足 k k k 个约束条件,可添加条件 ∑ y i = k \sum y_i=k ∑yi=k 。要求至少满足 k k k 个约束条件,可添加条件 ∑ y i ≥ k . \sum y_i \geq k. ∑yi≥k.
写在最后
后文将介绍 0-1 整数规划的解法,是比较重要的内容。
相关文章:
【管理运筹学】第 5 章 | 整数规划 (2,割平面法及 0-1 变量的特性)
文章目录 引言三、割平面法四、0-1 型整数规划4.1 0-1 变量的特性4.1.1 投资问题4.1.2 约束条件满足个数问题 写在最后 引言 前文我们介绍了整数规划的一种求解方法——分支定界法,可以求解纯整数和混合整数规划问题。现在我们来学习另一种整数规划求解方法——割平…...
Vscode详细安装教程
Vscode官网下载 官网地址:Download Visual Studio Code - Mac, Linux, Windows 通过链接可以直接跳转到下面的页面当中,支持的版本有Windows、Linux、Mac,可以选择适配自己电脑的版本,一般来说应该是Windows x64的。不要直接点W…...
法线矩阵推导
法线矩阵推导 https://zhuanlan.zhihu.com/p/72734738 https://juejin.cn/post/7113952418613690382 https://blog.csdn.net/wangjianxin97?typeblog 1、为什么需要法线矩阵 vec3 normalEyeSpace modelViewMatrix * normal;如果模型矩阵执行了非等比缩放, 顶点的改变会导致法…...
对容器、虚拟机和 Docker 的初学者友好介绍
一、说明 如果你是一个程序员或技术人员,你可能至少听说过Docker:一个有用的工具,用于在“容器”中打包,运输和运行应用程序。很难不这样做,这些天它得到了所有的关注 - 来自开发人员和系统管理员。即使是像谷歌、VMwa…...
linux部署clickhouse(单机)
一、下载安装 1.1、下载地址 阿里巴巴开源镜像站-OPSX镜像站-阿里云开发者社区阿里巴巴开源镜像站,免费提供Linux镜像下载服务,拥有Ubuntu、CentOS、Deepin、MongoDB、Apache、Maven、Composer等多种开源软件镜像源,此外还提供域名解析DNS、…...
vue组件注册
组件注册分为全局注册和局部注册 全局注册 在 main.js 或者入口文件中 import { createApp } from vue; import MyComponent from ./components/MyComponent.vue;const app createApp();app.component(my-component, MyComponent);app.mount(#app); 我们首先通过createApp…...
day20 飞机大战射击游戏
有飞行物类 飞行 爆炸 的连环画, 飞行的背景图 , 子弹图, 还有游戏开始 暂停 结束 的画面图。 设计一个飞机大战的小游戏, 玩家用鼠标操作hero飞行机, 射出子弹杀死敌机,小蜜蜂。 敌机可以获得分数&…...
iOS设计规范是什么?都有哪些具体规范
iOS设计规范是苹果为移动设备操作系统iOS制定的设计指南。iOS设计规范的制定保证了苹果应用在外观和操作上的一致性和可用性,从而提高了苹果界面设计的用户体验和应用程序的成功性。本文将从七个方面全面分析iOS设计规范。 1.iOS设计规范完整版分享 由「即时设计」…...
动手学深度学习-pytorch版本(二):线性神经网络
参考引用 动手学深度学习 1. 线性神经网络 神经网络的整个训练过程,包括: 定义简单的神经网络架构、数据处理、指定损失函数和如何训练模型。经典统计学习技术中的线性回归和 softmax 回归可以视为线性神经网络 1.1 线性回归 回归 (regression) 是能为一个或多个…...
Spark 图计算ONEID 进阶版
0、环境信息 本文采用阿里云maxcompute的spark环境为基础进行的,搭建本地spark环境参考搭建Windows开发环境_云原生大数据计算服务 MaxCompute-阿里云帮助中心 版本spark 2.4.5,maven版本大于3.8.4 ①配置pom依赖 详见2-1 ②添加运行jar包 ③添加配置信…...
Comparable和Comparator区别
Comparable和Comparator接口都是实现集合中元素的比较、排序的,众所周知,诸如Integer,double等基本数据类型,java可以对他们进行比较,而对于类的比较,需要人工定义比较用到的字段比较逻辑。总体来讲&#x…...
JAVA知识点梳理
我的博客:lcatake_flume,spark,zookeeper-CSDN博客 看不懂的话进去看看 1.Java的三个版本 JAVASE 基本 JAVAME 微缩 JAVAEE 标准 3.java的特点 面向对象 跨平台:jvm将java文件转变为字节码文件(.class)在多个系统中运 行字…...
[SWPUCTF 2022 新生赛]ez_ez_php
这段代码是一个简单的PHP文件处理脚本。让我们逐行进行分析: error_reporting(0); - 这行代码设置了错误报告的级别为0,意味着不显示任何错误。 if (isset($_GET[file])) { - 这行代码检查是否存在一个名为"file"的GET参数。 if ( substr($_…...
GraphQL strawberry的使用回顾和体会
GraphQL vs RESTful 简单来说GraphQL 比起 RESTful 集成额外一些功能 出入参校验、序列化 (简化后端编程)自由可选的返回数据字段 (简化一些多余接口开发和沟通联调成本) 这些都是优点了。 开发效率在项目初期是很重要的,需要快速原型化。 但是后期稳定后&#…...
08无监督学习——聚类
1.什么是聚类任务? 类别:无监督学习 目的:通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础。 1.1K均值聚类 步骤: 随机选取样本作为初始均值向量(初始值:k的值【即几个簇】)分别…...
Python使用OpenCV库对彩色图像进行通道分离
目录 1、解释说明: 2、使用示例: 3、注意事项: 1、解释说明: 在Python中,我们可以使用OpenCV库对彩色图像进行通道分离。通道分离是将彩色图像的每个像素分解为三个通道(红、绿、蓝)的过程。…...
前端面试:【CSS】盒模型、选择器、布局、响应式设计、Flexbox 与 Grid
CSS(层叠样式表)是用于控制网页外观和布局的重要语言。在这篇文章中,我们将深入探讨CSS的基础知识,包括盒模型、选择器、布局、响应式设计,以及弹性盒子(Flexbox)和网格布局(Grid&am…...
深入浅出通过PHP封装根据商品ID获取抖音商品详情数据方法
抖音商城商品详情数据是指商品在抖音商城中的展示信息,包括商品的标题、描述、价格、图片等。商家可以通过商品详情数据了解用户对商品的兴趣和需求,从而进行优化和调整。 商品详情数据还可以帮助商家评估商品的销售情况和市场竞争力,为制定…...
排序(七种排序)
1.插入排序 2.希尔排序 3.选择排序 4.堆排序 5.冒泡排序 6.快速排序 7.归并排序 1.插入排序 1.1思路 把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为 止,得到一个新的有序序列 1.2实现 //插入排…...
【工程优化问题】基于鲸鱼、萤火虫、灰狼优化算法的张力、压缩弹簧设计问题研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...
算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...
