分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测
分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测
目录
- 分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果


基本描述
1.SCNGO-CNN-LSTM-Attention数据分类预测程序,改进算法,融合正余弦和折射反向学习的北方苍鹰优化算法;
2.程序平台:无Attention适用于MATLAB 2020版及以上版本;融合Attention要求Matlab2023版以上;
3.基于融合正余弦和折射反向学习的北方苍鹰优化算法(SCNGO)、卷积神经网络(CNN)和长短期记忆网络(LSTM)融合注意力机制的数据分类预测程序;
北方苍鹰优化算法(Northern Goshawk Optimization,NGO)由MOHAMMAD DEHGHANI等人于2022年提出,该算法,该算法模拟了北方苍鹰捕猎过程(猎物识别和攻击、追逐及逃生)。
改进策略参照麻雀优化算法,改进点如下:
①采用折射反向学习策略初始化北方苍鹰算法个体,基本思想是通过计算当前解的反向解来扩大搜索范围,借此找出给定问题更好的备选解;
②采用正余弦策略替换原始苍鹰算法的勘察阶段的位置更新公式;
③对正余弦策略的步长搜索因子进行改进;原始步长搜索因子呈线性递减趋势,不利于进一步平衡北方苍鹰算法的全局搜索和局部开发能力。
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;精确度、召回率、精确率、F1分数等评价指标。
4.通过SCNGO优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数
4.绘制:损失、精度迭代变化极坐标图;测试对比散点图、混淆矩阵图;适应度曲线;展示:精确度、召回率、精确率、F1分数等评价指标。
5.适用领域:
适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。
程序设计
- 完整程序和数据获取方式:私信博主回复MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测;
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);curve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a; % Eq. (2.3) in the paperC=2*r2; % Eq. (2.4) in the paperb=1; % parameters in Eq. (2.5)l=(a2-1)*rand+1; % parameters in Eq. (2.5)p = rand(); % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5 if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader; % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测
分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测 目录 分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.SCNGO-CNN-LSTM-Attention数据分类预测程序,改进算法,融合正余弦和…...
Android学习之路(7) Frament
Fragment 表示应用界面中可重复使用的一部分。fragment 定义和管理自己的布局,具有自己的生命周期,并且可以处理自己的输入事件。fragment 不能独立存在。它们必须由 activity 或其他 fragment 托管。fragment 的视图层次结构会成为宿主的视图层次结构的…...
metallb , istio ingress 部署httpbin使用例子
安装metaillb,参考:Kubernetes的负载均衡方案:MetalLB - 文章详情 wget https://raw.githubusercontent.com/metallb/metallb/v0.13.7/config/manifests/metallb-frr.yaml -O metallb.yaml kubectl apply -f metallb-frr.yaml 配置负载均衡ip池 apiVe…...
基于swing的销售管理系统java仓库库存信息jsp源代码mysql
本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 基于swing的销售管理系统 系统有1权限:管…...
FreeCAD傻瓜式教程之约束设定和构建实体、开孔、调整颜色等
本内容基于官方教程中的绘制简单的零件中的体会,在初次绘制的时候,总是无法完成,几经尝试才发现其关键点所在,以此文记录,用以被查资料,同时也希望能够帮到纯白新手快速熟悉该软件的绘图方法。 一、. 打开…...
代码随想录算法训练营day41 | 343. 整数拆分,96. 不同的二叉搜索树
目录 343. 整数拆分 96. 不同的二叉搜索树 343. 整数拆分 类型:动态规划 难度:medium 思路: dp[i]所用的拆分方法至少已经拆分了两次,比如dp[2]1,小于2,在大于2的数中,最后的2是不会拆的。 …...
飞天使-k8sv1.14二进制安装
文章目录 安装前准备安装前设置分发脚本 开始安装k8s集群cfssl 安装部署kubectl命令行工具创建admin证书和私钥创建kubeconfig文件部署ETCD集群部署Flannel网络kube-apiserver 高可用KeepLived 部署部署master节点部署高可用kube-controller-manager集群kube-controller-manage…...
TypeScript封装Axios
TypeScript封装Axios Axios的基本使用 因axios基础使用十分简单,可参考axios官方文档,这里不在介绍他基本用法,主要讲解拦截器。 拦截器主要分为两种,请求拦截器和响应拦截器。 请求拦截器:请求发送之前进行拦截&…...
指针(一)【C语言进阶版】
大家好,我是深鱼~ 【前言】: 指针的主题,在初阶指针章节已经接触过了,我们知道了指针的概念: 1.指针就是个变量,用来存放地址,地址的唯一标识一块内存空间(指针变量)&a…...
回归预测 | MATLAB实现SA-BP模拟退火算法优化BP神经网络多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现SA-BP模拟退火算法优化BP神经网络多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现SA-BP模拟退火算法优化BP神经网络多输入单输出回归预测(多指标,多图)效果一览基本介…...
springMVC 已解密的登录请求
问题描述: 解决方案: 1.对用户所输入的密码在页面进行MD5加密并反馈至密码输入框。 2. 手动生成SSL安全访问证书;在此不做介绍,相关方法可通过网上查找; 3. 将产品HTTP访问方式改为SSL安全访问方式;在Ap…...
机器学习赋能乳腺癌预测:如何使用贝叶斯分级进行精确诊断?
一、引言 乳腺癌是女性最常见的恶性肿瘤之一,也会发生在男性身上。每年全球有数百万人被诊断出乳腺癌,对患者的生活和健康造成了巨大的影响。早期的乳腺癌检测和准确的诊断对于提高治疗的成功率至关重要。然而,乳腺癌的早期诊断面临着许多挑战…...
Java后端开发面试题——框架篇
Spring框架中的bean是单例的吗?Spring框架中的单例bean是线程安全的吗? singleton : bean在每个Spring IOC容器中只有一个实例。 prototype:一个bean的定义可以有多个实例。 Spring bean并没有可变的状态(比如Service类和DAO类),…...
【新版】系统架构设计师 - 系统测试与维护
个人总结,仅供参考,欢迎加好友一起讨论 文章目录 架构 - 系统测试与维护考点摘要软件测试软件测试 - 测试类型软件测试 - 静态测试软件测试 - 动态测试软件测试 - 测试阶段软件测试 - 测试阶段 - 单元测试软件测试 - 测试阶段 - 集成测试软件测试 - 测试…...
使用 useEffect 和 reactStrictMode:优化 React 组件的性能和可靠性
使用useEffect和React.StrictMode是一种优化React组件性能和可靠性的常见做法。下面是关于如何使用这两个特性的示例: import React, { useEffect } from react;function MyComponent() {useEffect(() > {// 在组件挂载/更新时执行的副作用代码// 可以进行数据获…...
商业智能BI是什么都不明白,如何实现数字化?
2021年下半年中国商业智能软件市场规模为4.8亿美元,2021年度市场规模达到7.8亿美元,同比增长34.9%,呈现飞速增长的趋势。数字化时代,商业智能BI对于企业的落地应用有着巨大价值,逐渐成为了现代企业信息化、数字化转型中…...
【五子棋】
五子棋 文章目录 五子棋前言一、登录功能二.哈希表管理用户的会话和房间三.基于Websocket连接开发的功能1.匹配功能2.游戏房间3.挑战功能4.人机对战5.聊天功能 前言 这篇博客主要详细介绍我的五子棋项目的核心功能的实现细节,也就是详细介绍五子棋各个功能是如何实…...
docker 01(初识docker)
一、docker概念 Docker是一个开源的应用容器引擎;诞生于2013年初,基于Go 语言实现,dotCloud公司出品(后改名为Dockerlnc);Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的Linux …...
爬虫逆向实战(十九)--某号站登录
一、数据接口分析 主页地址:某号站 1、抓包 通过抓包可以发现登录接口 2、判断是否有加密参数 请求参数是否加密? 通过查看“载荷”模块可以发现有一个jsondata_rsa的加密参数 请求头是否加密? 无响应是否加密? 无cookie是否…...
linux环境docker安装mysql
1:docker拉取mysql镜像(可有自己选择mysql版本) [rootlocalhost ~]# docker pull mysql:8.02: Docker 中启动 MySQL 容器,可以使用以下命令: docker run -d --name mysql_container -v ./sql:/docker-…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...
