基于蜣螂算法优化Kmeans图像分割-附代码
基于蜣螂优化Kmeans图像分割算法 - 附代码
文章目录
- 基于蜣螂优化Kmeans图像分割算法 - 附代码
- 1.Kmeans原理
- 2.基于蜣螂算法的Kmeans聚类
- 3.算法实验结果
- 4.Matlab代码
摘要:基于蜣螂优化Kmeans图像分割算法。
1.Kmeans原理
K-Means算法是一种无监督分类算法,假设有无标签数据集:
X=[x1,x2,...,xn](1)X = [x_1,x_2,...,x_n] \tag{1} X=[x1,x2,...,xn](1)
该算法的任务是将数据集聚类成kkk簇C=C1,C2,...,CkC = C_1,C2,...,C_kC=C1,C2,...,Ck,最小化损失函数为:
E=∑i=1k∑x∈Ci∣∣x−ui∣∣2(2)E = \sum_{i=1}^k\sum_{x\in C_i}||x-u_i||^2 \tag{2} E=i=1∑kx∈Ci∑∣∣x−ui∣∣2(2)
其中uiu_iui为簇的中心点:
ui=1∣Ci∣∑x∈Cix(3)u_i = \frac{1}{|C_i|}\sum_{x\in C_i}x \tag{3} ui=∣Ci∣1x∈Ci∑x(3)
要找到以上问题的最优解需要遍历所有可能的簇划分,K-Mmeans算法使用贪心策略求得一个近似解,具体步骤如下:
1.在样本中随机选取kkk个样本点充当各个簇的中心点{u1,u2,...,uk}\{u_1,u_2,...,u_k\}{u1,u2,...,uk}
2.计算所有样本点与各个簇中心之间的距离dist(xi,uj)dist(x_i,u_j)dist(xi,uj),然后把样本点划入最近的簇中xi∈unearestx_i \in u_{nearest}xi∈unearest
3.根据簇中已有的样本点,重新计算簇中心
ui=1∣Ci∣∑x∈Cixu_i = \frac{1}{|C_i|}\sum_{x\in C_i}x ui=∣Ci∣1x∈Ci∑x
4.重复2、3
K-means算法得到的聚类结果严重依赖与初始簇中心的选择,如果初始簇中心选择不好,就会陷入局部最优解.因此初始簇中心的选择非常重要。本文利用蜣螂优化算法对初始簇中心进行优化,改进其容易陷入局部最优的特点。
2.基于蜣螂算法的Kmeans聚类
蜣螂算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/128280084
适应度函数:利用蜣螂算法改进kmeans时,以聚类中心作为蜣螂算法的优化变量,适应度函数设计如下:
fitness=∑i=1k∑x∈Ci∣∣x−ui∣∣2fitness = \sum_{i=1}^k\sum_{x\in C_i}||x-u_i||^2 fitness=i=1∑kx∈Ci∑∣∣x−ui∣∣2
该适应度函数与kmeans的最小损失函数一致。
算法的具体流程如下:
1.随机抽样待分类数据点,作为蜣螂聚类候选点。
2.利用蜣螂算法搜索最小损失的的聚类点。
3.将这些聚类点作为kmeans算法的初始聚类点。
4.利用kmeans获得最终的聚类点。
3.算法实验结果
将基于蜣螂优化的Kmeans算法用于图像的分割实验。对于图像,选取10%的像素点作为聚类候选点。
对于彩色图像的聚类效果如下图所示:

收敛曲线:

4.Matlab代码
相关文章:
基于蜣螂算法优化Kmeans图像分割-附代码
基于蜣螂优化Kmeans图像分割算法 - 附代码 文章目录基于蜣螂优化Kmeans图像分割算法 - 附代码1.Kmeans原理2.基于蜣螂算法的Kmeans聚类3.算法实验结果4.Matlab代码摘要:基于蜣螂优化Kmeans图像分割算法。1.Kmeans原理 K-Means算法是一种无监督分类算法,…...
第二章 Kafka设计原理详解
第二章 Kafka设计原理详解 1、Kafka核心总控制器Controller 在 Kafka 集群中会有一个或者多个 broker,其中有一个 broker 会被选举为控制器(Kafka Controller),它负责管理整个集群中所有分区和副本的状态。 当某个分区的 leader…...
《NFL橄榄球》:费城老鹰·橄榄1号位
费城老鹰(英语:Philadelphia Eagles)是美国橄榄球联盟在宾夕法尼亚州费城的一支球队。1933年在国家橄榄球联盟扩编时与匹兹堡钢人和辛辛那提红人一起加入;1943年赛季因二次大战的缘故,和匹兹堡钢人作短暂的合并。 在20…...
【人工智能AI】四、NoSQL进阶《NoSQL 企业级基础入门与进阶实战》
帮我写一篇介绍NoSQL的技术文章,文章的标题是《四、NoSQL进阶》,不少于3000字。帮我细化到三级目录,使用markdown格式。这篇文章的目录是: 四、NoSQL 进阶 4.1 NoSQL 高可用 4.2 NoSQL 数据安全 4.3 NoSQL 性能优化 4.4 总结 四、…...
K8S 部署 Jenkins
本文使用 bitnami 镜像部署 Jenkins 官方文档:https://github.com/bitnami/charts/tree/main/bitnami/jenkins 添加 bitnami 仓库 helm repo add bitnami https://charts.bitnami.com/bitnami自定义 values.yaml storageClass:集群的存储类ÿ…...
【人工智能AI】五、NoSQL 应用实践《NoSQL 企业级基础入门与进阶实战》
帮我写一篇介绍NoSQL的技术文章,文章的标题是《五、NoSQL 应用实践》,不少于3000字。目录需要细化到三级目录,使用markdown格式。这篇文章的大的目录是: 五、NoSQL 应用实践 5.1 NoSQL 实时数据分析 5.2 NoSQL 分布式系统 5.3 NoS…...
Java爬虫系列 - 爬虫补充内容+ElasticSearch展示数据
一,定时任务Cron表达式Component public class TaskTest {Scheduled(cron "0/5 * * * * *") // 从0秒开始,每个五秒 执行一次 { 秒 分 时 天 月 周 }public void test(){System.out.println("定时任务执行了");} }二,网…...
Typora常用快捷键
Typora常用快捷键大全 ctrl1到6:1~6级标题,标题用ctrlH是没用的 ctrlshiftk:随时随地插入代码块,极为方便。 ctrlt:创建表格,也可直接输入|列1|列2|列3|并回车来创建表 ctrlshiftq:能实现添加…...
开学季好用电容笔有哪些?好用实惠的电容笔推荐
随着科学技术的快速发展,ipad的影响力越来越大,而且ipad的用户也越来越多,如果要提高ipad的功能,让ipad更加有趣,那么就需要一款非常适合自己,并且非常实用的电容笔。那么,究竟该选择哪个品牌的…...
C++_复习Recording
文章目录C复习课填空题编程题C复习课 试卷说明: 题型: 填空 编程题目 填空题 构造函数无返回类型,与类名同名; 复制构造函数用于创建对象,形实参结合,返回和接收对象。 补充: 只有在声明语句中使用一个变…...
【java】Spring Cloud --Spring Cloud 的核心组件
文章目录前言一、Eureka(注册中心)二、Zuul(服务网关)三、 Ribbon(负载均衡)四、Hystrix(熔断保护器)五、 Feign(REST转换器)六、 Config(分布式配…...
【C++】RBTree——红黑树
文章目录一、红黑树的概念二、红黑树的性质三、红黑树节点的定义四、红黑树的插入五、代码实现一、红黑树的概念 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上…...
【5G RRC】5G系统消息SIB2介绍
博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…...
自托管提醒平台Noted Reminders
什么是 Noted Reminders ? Noted 是一个简单的自托管应用程序,用于创建使用 Apprise API 推送到设备的提醒。您可以向几乎每个平台发送消息,包括定时电子邮件! 什么是 Apprise API ? Apprise 允许您向我们今天可用的几乎所有最流…...
LockSupport常用方法源码分析
前言:本文将介绍LockSupport类中的方法和部分源码,以及面试常问到的一个小问题,感兴趣的大佬可以指点下。 希望能够加深自己的印象以及帮助到其他的小伙伴儿们😉😉。 如果文章有什么需要改进的地方还请大佬不吝赐教&am…...
Mybatis Notes
文章目录1 Mybatis 介绍1.1 快速入门2 JDBC2.1 JDBC介绍2.3 JDBC问题分析2.4 Mybatis与JDBC技术对比3 数据库连接池3.1 数据库连接池介绍3.2 数据库连接池产品产品3.3 Druid引入项目4lombok4.1 lombok介绍4.2 lombok使用4.2.1 在pom.xml文件中引入依赖4.2.2 pojo类代码引入1 My…...
MySQL 10:MySQL事务
MySQL 中的事务是由存储引擎实现的。在 MySQL 中,只有 InnoDB 存储引擎支持事务。事务处理可用于维护数据库的完整性,确保批处理的 SQL 语句要么执行要么根本不执行。事务用于管理 DDL、DML 和 DCL 操作,例如插入、更新和删除语句,…...
软件设计(十三)-原码、反码、补码、移码
软件设计(十二)数据结构(下)https://blog.csdn.net/ke1ying/article/details/129035300 下面把一个数转成二进制表达形式 原码: 数值1 : 0000 0001 数值-1 : 1000 0001 1 (- 1) : 1000 0010 这是8个…...
5.4 BGP地址聚合
5.3.1配置BGP地址聚合 1. 实验目的 熟悉BGP地址聚合的应用场景掌握BGP地址聚合的配置方法2. 实验拓扑 实验拓扑如图5-4所示: 图5-4:配置BGP地址聚合 3. 实验步骤 (1)配置IP地址 R1的配置 <Huawe…...
华为OD机试 - 数列还原(Python) | 机试题算法思路 【2023】
最近更新的博客 华为OD机试 - 自动曝光(Python) | 机试题算法思路 【2023】 华为OD机试 - 双十一(Python) | 机试题算法思路 【2023】 华为OD机试 - 删除最少字符(Python) | 机试题算法思路 【2023-02】 华为OD机试 - Excel 单元格数值统计(Python) | 机试题算法思路 …...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 :爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
