基于蜣螂算法优化Kmeans图像分割-附代码
基于蜣螂优化Kmeans图像分割算法 - 附代码
文章目录
- 基于蜣螂优化Kmeans图像分割算法 - 附代码
- 1.Kmeans原理
- 2.基于蜣螂算法的Kmeans聚类
- 3.算法实验结果
- 4.Matlab代码
摘要:基于蜣螂优化Kmeans图像分割算法。
1.Kmeans原理
K-Means算法是一种无监督分类算法,假设有无标签数据集:
X=[x1,x2,...,xn](1)X = [x_1,x_2,...,x_n] \tag{1} X=[x1,x2,...,xn](1)
该算法的任务是将数据集聚类成kkk簇C=C1,C2,...,CkC = C_1,C2,...,C_kC=C1,C2,...,Ck,最小化损失函数为:
E=∑i=1k∑x∈Ci∣∣x−ui∣∣2(2)E = \sum_{i=1}^k\sum_{x\in C_i}||x-u_i||^2 \tag{2} E=i=1∑kx∈Ci∑∣∣x−ui∣∣2(2)
其中uiu_iui为簇的中心点:
ui=1∣Ci∣∑x∈Cix(3)u_i = \frac{1}{|C_i|}\sum_{x\in C_i}x \tag{3} ui=∣Ci∣1x∈Ci∑x(3)
要找到以上问题的最优解需要遍历所有可能的簇划分,K-Mmeans算法使用贪心策略求得一个近似解,具体步骤如下:
1.在样本中随机选取kkk个样本点充当各个簇的中心点{u1,u2,...,uk}\{u_1,u_2,...,u_k\}{u1,u2,...,uk}
2.计算所有样本点与各个簇中心之间的距离dist(xi,uj)dist(x_i,u_j)dist(xi,uj),然后把样本点划入最近的簇中xi∈unearestx_i \in u_{nearest}xi∈unearest
3.根据簇中已有的样本点,重新计算簇中心
ui=1∣Ci∣∑x∈Cixu_i = \frac{1}{|C_i|}\sum_{x\in C_i}x ui=∣Ci∣1x∈Ci∑x
4.重复2、3
K-means算法得到的聚类结果严重依赖与初始簇中心的选择,如果初始簇中心选择不好,就会陷入局部最优解.因此初始簇中心的选择非常重要。本文利用蜣螂优化算法对初始簇中心进行优化,改进其容易陷入局部最优的特点。
2.基于蜣螂算法的Kmeans聚类
蜣螂算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/128280084
适应度函数:利用蜣螂算法改进kmeans时,以聚类中心作为蜣螂算法的优化变量,适应度函数设计如下:
fitness=∑i=1k∑x∈Ci∣∣x−ui∣∣2fitness = \sum_{i=1}^k\sum_{x\in C_i}||x-u_i||^2 fitness=i=1∑kx∈Ci∑∣∣x−ui∣∣2
该适应度函数与kmeans的最小损失函数一致。
算法的具体流程如下:
1.随机抽样待分类数据点,作为蜣螂聚类候选点。
2.利用蜣螂算法搜索最小损失的的聚类点。
3.将这些聚类点作为kmeans算法的初始聚类点。
4.利用kmeans获得最终的聚类点。
3.算法实验结果
将基于蜣螂优化的Kmeans算法用于图像的分割实验。对于图像,选取10%的像素点作为聚类候选点。
对于彩色图像的聚类效果如下图所示:

收敛曲线:

4.Matlab代码
相关文章:
基于蜣螂算法优化Kmeans图像分割-附代码
基于蜣螂优化Kmeans图像分割算法 - 附代码 文章目录基于蜣螂优化Kmeans图像分割算法 - 附代码1.Kmeans原理2.基于蜣螂算法的Kmeans聚类3.算法实验结果4.Matlab代码摘要:基于蜣螂优化Kmeans图像分割算法。1.Kmeans原理 K-Means算法是一种无监督分类算法,…...
第二章 Kafka设计原理详解
第二章 Kafka设计原理详解 1、Kafka核心总控制器Controller 在 Kafka 集群中会有一个或者多个 broker,其中有一个 broker 会被选举为控制器(Kafka Controller),它负责管理整个集群中所有分区和副本的状态。 当某个分区的 leader…...
《NFL橄榄球》:费城老鹰·橄榄1号位
费城老鹰(英语:Philadelphia Eagles)是美国橄榄球联盟在宾夕法尼亚州费城的一支球队。1933年在国家橄榄球联盟扩编时与匹兹堡钢人和辛辛那提红人一起加入;1943年赛季因二次大战的缘故,和匹兹堡钢人作短暂的合并。 在20…...
【人工智能AI】四、NoSQL进阶《NoSQL 企业级基础入门与进阶实战》
帮我写一篇介绍NoSQL的技术文章,文章的标题是《四、NoSQL进阶》,不少于3000字。帮我细化到三级目录,使用markdown格式。这篇文章的目录是: 四、NoSQL 进阶 4.1 NoSQL 高可用 4.2 NoSQL 数据安全 4.3 NoSQL 性能优化 4.4 总结 四、…...
K8S 部署 Jenkins
本文使用 bitnami 镜像部署 Jenkins 官方文档:https://github.com/bitnami/charts/tree/main/bitnami/jenkins 添加 bitnami 仓库 helm repo add bitnami https://charts.bitnami.com/bitnami自定义 values.yaml storageClass:集群的存储类ÿ…...
【人工智能AI】五、NoSQL 应用实践《NoSQL 企业级基础入门与进阶实战》
帮我写一篇介绍NoSQL的技术文章,文章的标题是《五、NoSQL 应用实践》,不少于3000字。目录需要细化到三级目录,使用markdown格式。这篇文章的大的目录是: 五、NoSQL 应用实践 5.1 NoSQL 实时数据分析 5.2 NoSQL 分布式系统 5.3 NoS…...
Java爬虫系列 - 爬虫补充内容+ElasticSearch展示数据
一,定时任务Cron表达式Component public class TaskTest {Scheduled(cron "0/5 * * * * *") // 从0秒开始,每个五秒 执行一次 { 秒 分 时 天 月 周 }public void test(){System.out.println("定时任务执行了");} }二,网…...
Typora常用快捷键
Typora常用快捷键大全 ctrl1到6:1~6级标题,标题用ctrlH是没用的 ctrlshiftk:随时随地插入代码块,极为方便。 ctrlt:创建表格,也可直接输入|列1|列2|列3|并回车来创建表 ctrlshiftq:能实现添加…...
开学季好用电容笔有哪些?好用实惠的电容笔推荐
随着科学技术的快速发展,ipad的影响力越来越大,而且ipad的用户也越来越多,如果要提高ipad的功能,让ipad更加有趣,那么就需要一款非常适合自己,并且非常实用的电容笔。那么,究竟该选择哪个品牌的…...
C++_复习Recording
文章目录C复习课填空题编程题C复习课 试卷说明: 题型: 填空 编程题目 填空题 构造函数无返回类型,与类名同名; 复制构造函数用于创建对象,形实参结合,返回和接收对象。 补充: 只有在声明语句中使用一个变…...
【java】Spring Cloud --Spring Cloud 的核心组件
文章目录前言一、Eureka(注册中心)二、Zuul(服务网关)三、 Ribbon(负载均衡)四、Hystrix(熔断保护器)五、 Feign(REST转换器)六、 Config(分布式配…...
【C++】RBTree——红黑树
文章目录一、红黑树的概念二、红黑树的性质三、红黑树节点的定义四、红黑树的插入五、代码实现一、红黑树的概念 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上…...
【5G RRC】5G系统消息SIB2介绍
博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…...
自托管提醒平台Noted Reminders
什么是 Noted Reminders ? Noted 是一个简单的自托管应用程序,用于创建使用 Apprise API 推送到设备的提醒。您可以向几乎每个平台发送消息,包括定时电子邮件! 什么是 Apprise API ? Apprise 允许您向我们今天可用的几乎所有最流…...
LockSupport常用方法源码分析
前言:本文将介绍LockSupport类中的方法和部分源码,以及面试常问到的一个小问题,感兴趣的大佬可以指点下。 希望能够加深自己的印象以及帮助到其他的小伙伴儿们😉😉。 如果文章有什么需要改进的地方还请大佬不吝赐教&am…...
Mybatis Notes
文章目录1 Mybatis 介绍1.1 快速入门2 JDBC2.1 JDBC介绍2.3 JDBC问题分析2.4 Mybatis与JDBC技术对比3 数据库连接池3.1 数据库连接池介绍3.2 数据库连接池产品产品3.3 Druid引入项目4lombok4.1 lombok介绍4.2 lombok使用4.2.1 在pom.xml文件中引入依赖4.2.2 pojo类代码引入1 My…...
MySQL 10:MySQL事务
MySQL 中的事务是由存储引擎实现的。在 MySQL 中,只有 InnoDB 存储引擎支持事务。事务处理可用于维护数据库的完整性,确保批处理的 SQL 语句要么执行要么根本不执行。事务用于管理 DDL、DML 和 DCL 操作,例如插入、更新和删除语句,…...
软件设计(十三)-原码、反码、补码、移码
软件设计(十二)数据结构(下)https://blog.csdn.net/ke1ying/article/details/129035300 下面把一个数转成二进制表达形式 原码: 数值1 : 0000 0001 数值-1 : 1000 0001 1 (- 1) : 1000 0010 这是8个…...
5.4 BGP地址聚合
5.3.1配置BGP地址聚合 1. 实验目的 熟悉BGP地址聚合的应用场景掌握BGP地址聚合的配置方法2. 实验拓扑 实验拓扑如图5-4所示: 图5-4:配置BGP地址聚合 3. 实验步骤 (1)配置IP地址 R1的配置 <Huawe…...
华为OD机试 - 数列还原(Python) | 机试题算法思路 【2023】
最近更新的博客 华为OD机试 - 自动曝光(Python) | 机试题算法思路 【2023】 华为OD机试 - 双十一(Python) | 机试题算法思路 【2023】 华为OD机试 - 删除最少字符(Python) | 机试题算法思路 【2023-02】 华为OD机试 - Excel 单元格数值统计(Python) | 机试题算法思路 …...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅
目录 前言 操作系统与驱动程序 是什么,为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中,我们在使用电子设备时,我们所输入执行的每一条指令最终大多都会作用到硬件上,比如下载一款软件最终会下载到硬盘上&am…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...
【深尚想】TPS54618CQRTERQ1汽车级同步降压转换器电源芯片全面解析
1. 元器件定义与技术特点 TPS54618CQRTERQ1 是德州仪器(TI)推出的一款 汽车级同步降压转换器(DC-DC开关稳压器),属于高性能电源管理芯片。核心特性包括: 输入电压范围:2.95V–6V,输…...
stm32进入Infinite_Loop原因(因为有系统中断函数未自定义实现)
这是系统中断服务程序的默认处理汇编函数,如果我们没有定义实现某个中断函数,那么当stm32产生了该中断时,就会默认跑这里来了,所以我们打开了什么中断,一定要记得实现对应的系统中断函数,否则会进来一直循环…...
Java中栈的多种实现类详解
Java中栈的多种实现类详解:Stack、LinkedList与ArrayDeque全方位对比 前言一、Stack类——Java最早的栈实现1.1 Stack类简介1.2 常用方法1.3 优缺点分析 二、LinkedList类——灵活的双端链表2.1 LinkedList类简介2.2 常用方法2.3 优缺点分析 三、ArrayDeque类——高…...
RKNN开发环境搭建2-RKNN Model Zoo 环境搭建
目录 1.简介2.环境搭建2.1 启动 docker 环境2.2 安装依赖工具2.3 下载 RKNN Model Zoo2.4 RKNN模型转化2.5编译C++1.简介 RKNN Model Zoo基于 RKNPU SDK 工具链开发, 提供了目前主流算法的部署例程. 例程包含导出RKNN模型, 使用 Python API, CAPI 推理 RKNN 模型的流程. 本…...
