基于蜣螂算法优化Kmeans图像分割-附代码
基于蜣螂优化Kmeans图像分割算法 - 附代码
文章目录
- 基于蜣螂优化Kmeans图像分割算法 - 附代码
- 1.Kmeans原理
- 2.基于蜣螂算法的Kmeans聚类
- 3.算法实验结果
- 4.Matlab代码
摘要:基于蜣螂优化Kmeans图像分割算法。
1.Kmeans原理
K-Means算法是一种无监督分类算法,假设有无标签数据集:
X=[x1,x2,...,xn](1)X = [x_1,x_2,...,x_n] \tag{1} X=[x1,x2,...,xn](1)
该算法的任务是将数据集聚类成kkk簇C=C1,C2,...,CkC = C_1,C2,...,C_kC=C1,C2,...,Ck,最小化损失函数为:
E=∑i=1k∑x∈Ci∣∣x−ui∣∣2(2)E = \sum_{i=1}^k\sum_{x\in C_i}||x-u_i||^2 \tag{2} E=i=1∑kx∈Ci∑∣∣x−ui∣∣2(2)
其中uiu_iui为簇的中心点:
ui=1∣Ci∣∑x∈Cix(3)u_i = \frac{1}{|C_i|}\sum_{x\in C_i}x \tag{3} ui=∣Ci∣1x∈Ci∑x(3)
要找到以上问题的最优解需要遍历所有可能的簇划分,K-Mmeans算法使用贪心策略求得一个近似解,具体步骤如下:
1.在样本中随机选取kkk个样本点充当各个簇的中心点{u1,u2,...,uk}\{u_1,u_2,...,u_k\}{u1,u2,...,uk}
2.计算所有样本点与各个簇中心之间的距离dist(xi,uj)dist(x_i,u_j)dist(xi,uj),然后把样本点划入最近的簇中xi∈unearestx_i \in u_{nearest}xi∈unearest
3.根据簇中已有的样本点,重新计算簇中心
ui=1∣Ci∣∑x∈Cixu_i = \frac{1}{|C_i|}\sum_{x\in C_i}x ui=∣Ci∣1x∈Ci∑x
4.重复2、3
K-means算法得到的聚类结果严重依赖与初始簇中心的选择,如果初始簇中心选择不好,就会陷入局部最优解.因此初始簇中心的选择非常重要。本文利用蜣螂优化算法对初始簇中心进行优化,改进其容易陷入局部最优的特点。
2.基于蜣螂算法的Kmeans聚类
蜣螂算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/128280084
适应度函数:利用蜣螂算法改进kmeans时,以聚类中心作为蜣螂算法的优化变量,适应度函数设计如下:
fitness=∑i=1k∑x∈Ci∣∣x−ui∣∣2fitness = \sum_{i=1}^k\sum_{x\in C_i}||x-u_i||^2 fitness=i=1∑kx∈Ci∑∣∣x−ui∣∣2
该适应度函数与kmeans的最小损失函数一致。
算法的具体流程如下:
1.随机抽样待分类数据点,作为蜣螂聚类候选点。
2.利用蜣螂算法搜索最小损失的的聚类点。
3.将这些聚类点作为kmeans算法的初始聚类点。
4.利用kmeans获得最终的聚类点。
3.算法实验结果
将基于蜣螂优化的Kmeans算法用于图像的分割实验。对于图像,选取10%的像素点作为聚类候选点。
对于彩色图像的聚类效果如下图所示:
收敛曲线:
4.Matlab代码
相关文章:

基于蜣螂算法优化Kmeans图像分割-附代码
基于蜣螂优化Kmeans图像分割算法 - 附代码 文章目录基于蜣螂优化Kmeans图像分割算法 - 附代码1.Kmeans原理2.基于蜣螂算法的Kmeans聚类3.算法实验结果4.Matlab代码摘要:基于蜣螂优化Kmeans图像分割算法。1.Kmeans原理 K-Means算法是一种无监督分类算法,…...

第二章 Kafka设计原理详解
第二章 Kafka设计原理详解 1、Kafka核心总控制器Controller 在 Kafka 集群中会有一个或者多个 broker,其中有一个 broker 会被选举为控制器(Kafka Controller),它负责管理整个集群中所有分区和副本的状态。 当某个分区的 leader…...
《NFL橄榄球》:费城老鹰·橄榄1号位
费城老鹰(英语:Philadelphia Eagles)是美国橄榄球联盟在宾夕法尼亚州费城的一支球队。1933年在国家橄榄球联盟扩编时与匹兹堡钢人和辛辛那提红人一起加入;1943年赛季因二次大战的缘故,和匹兹堡钢人作短暂的合并。 在20…...

【人工智能AI】四、NoSQL进阶《NoSQL 企业级基础入门与进阶实战》
帮我写一篇介绍NoSQL的技术文章,文章的标题是《四、NoSQL进阶》,不少于3000字。帮我细化到三级目录,使用markdown格式。这篇文章的目录是: 四、NoSQL 进阶 4.1 NoSQL 高可用 4.2 NoSQL 数据安全 4.3 NoSQL 性能优化 4.4 总结 四、…...

K8S 部署 Jenkins
本文使用 bitnami 镜像部署 Jenkins 官方文档:https://github.com/bitnami/charts/tree/main/bitnami/jenkins 添加 bitnami 仓库 helm repo add bitnami https://charts.bitnami.com/bitnami自定义 values.yaml storageClass:集群的存储类ÿ…...
【人工智能AI】五、NoSQL 应用实践《NoSQL 企业级基础入门与进阶实战》
帮我写一篇介绍NoSQL的技术文章,文章的标题是《五、NoSQL 应用实践》,不少于3000字。目录需要细化到三级目录,使用markdown格式。这篇文章的大的目录是: 五、NoSQL 应用实践 5.1 NoSQL 实时数据分析 5.2 NoSQL 分布式系统 5.3 NoS…...

Java爬虫系列 - 爬虫补充内容+ElasticSearch展示数据
一,定时任务Cron表达式Component public class TaskTest {Scheduled(cron "0/5 * * * * *") // 从0秒开始,每个五秒 执行一次 { 秒 分 时 天 月 周 }public void test(){System.out.println("定时任务执行了");} }二,网…...
Typora常用快捷键
Typora常用快捷键大全 ctrl1到6:1~6级标题,标题用ctrlH是没用的 ctrlshiftk:随时随地插入代码块,极为方便。 ctrlt:创建表格,也可直接输入|列1|列2|列3|并回车来创建表 ctrlshiftq:能实现添加…...

开学季好用电容笔有哪些?好用实惠的电容笔推荐
随着科学技术的快速发展,ipad的影响力越来越大,而且ipad的用户也越来越多,如果要提高ipad的功能,让ipad更加有趣,那么就需要一款非常适合自己,并且非常实用的电容笔。那么,究竟该选择哪个品牌的…...

C++_复习Recording
文章目录C复习课填空题编程题C复习课 试卷说明: 题型: 填空 编程题目 填空题 构造函数无返回类型,与类名同名; 复制构造函数用于创建对象,形实参结合,返回和接收对象。 补充: 只有在声明语句中使用一个变…...

【java】Spring Cloud --Spring Cloud 的核心组件
文章目录前言一、Eureka(注册中心)二、Zuul(服务网关)三、 Ribbon(负载均衡)四、Hystrix(熔断保护器)五、 Feign(REST转换器)六、 Config(分布式配…...

【C++】RBTree——红黑树
文章目录一、红黑树的概念二、红黑树的性质三、红黑树节点的定义四、红黑树的插入五、代码实现一、红黑树的概念 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上…...

【5G RRC】5G系统消息SIB2介绍
博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…...

自托管提醒平台Noted Reminders
什么是 Noted Reminders ? Noted 是一个简单的自托管应用程序,用于创建使用 Apprise API 推送到设备的提醒。您可以向几乎每个平台发送消息,包括定时电子邮件! 什么是 Apprise API ? Apprise 允许您向我们今天可用的几乎所有最流…...

LockSupport常用方法源码分析
前言:本文将介绍LockSupport类中的方法和部分源码,以及面试常问到的一个小问题,感兴趣的大佬可以指点下。 希望能够加深自己的印象以及帮助到其他的小伙伴儿们😉😉。 如果文章有什么需要改进的地方还请大佬不吝赐教&am…...

Mybatis Notes
文章目录1 Mybatis 介绍1.1 快速入门2 JDBC2.1 JDBC介绍2.3 JDBC问题分析2.4 Mybatis与JDBC技术对比3 数据库连接池3.1 数据库连接池介绍3.2 数据库连接池产品产品3.3 Druid引入项目4lombok4.1 lombok介绍4.2 lombok使用4.2.1 在pom.xml文件中引入依赖4.2.2 pojo类代码引入1 My…...

MySQL 10:MySQL事务
MySQL 中的事务是由存储引擎实现的。在 MySQL 中,只有 InnoDB 存储引擎支持事务。事务处理可用于维护数据库的完整性,确保批处理的 SQL 语句要么执行要么根本不执行。事务用于管理 DDL、DML 和 DCL 操作,例如插入、更新和删除语句,…...

软件设计(十三)-原码、反码、补码、移码
软件设计(十二)数据结构(下)https://blog.csdn.net/ke1ying/article/details/129035300 下面把一个数转成二进制表达形式 原码: 数值1 : 0000 0001 数值-1 : 1000 0001 1 (- 1) : 1000 0010 这是8个…...

5.4 BGP地址聚合
5.3.1配置BGP地址聚合 1. 实验目的 熟悉BGP地址聚合的应用场景掌握BGP地址聚合的配置方法2. 实验拓扑 实验拓扑如图5-4所示: 图5-4:配置BGP地址聚合 3. 实验步骤 (1)配置IP地址 R1的配置 <Huawe…...
华为OD机试 - 数列还原(Python) | 机试题算法思路 【2023】
最近更新的博客 华为OD机试 - 自动曝光(Python) | 机试题算法思路 【2023】 华为OD机试 - 双十一(Python) | 机试题算法思路 【2023】 华为OD机试 - 删除最少字符(Python) | 机试题算法思路 【2023-02】 华为OD机试 - Excel 单元格数值统计(Python) | 机试题算法思路 …...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...

嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...

day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...