生成式AI和大语言模型 Generative AI LLMs

在“使用大型语言模型(LLMs)的生成性AI”中,您将学习生成性AI的基本工作原理,以及如何在实际应用中部署它。
通过参加这门课程,您将学会:
- 深入了解生成性AI,描述基于LLM的典型生成性AI生命周期中的关键步骤,从数据收集和模型选择,到性能评估和部署
- 详细描述为LLMs提供动力的变换器架构,它们是如何被训练的,以及微调如何使LLMs能够适应各种特定的用例
- 使用经验性的缩放法则来优化模型的目标函数,跨数据集大小、计算预算和推断要求
- 应用最先进的训练、调整、推断、工具和部署方法,以在项目的特定约束条件下最大化模型的性能
- 在听取行业研究人员和从业者的故事后,讨论生成性AI为企业带来的挑战和机会
对于那些对LLMs的工作原理有良好基础理解的开发者,以及了解训练和部署它们背后的最佳实践的人,他们将能够为公司做出明智的决策,并更快地构建工作原型。这门课程将帮助学习者建立关于如何最好地利用这一令人兴奋的新技术的实用直觉。
这是一门中级课程,所以您应该有一些Python编码的经验,以便从中获得最大的收益。您还应该熟悉机器学习的基础知识,如有监督和无监督学习、损失函数、以及将数据分为训练、验证和测试集。如果您已经参加了DeepLearning.AI的机器学习专项课程或深度学习专项课程,那么您将准备好参加这门课程,并深入探讨生成性AI的基础知识。
我们将讨论大型语言模型、它们的使用案例、模型如何工作、提示工程、如何生成创意文本输出,并为生成性AI项目概述一个项目生命周期。

考虑到您对这门课程的兴趣,可以肯定地说,您已经有机会尝试一个生成性AI工具或希望这样做。无论是聊天机器人、

从文本生成图像,

还是使用插件帮助您开发代码,

您在这些工具中看到的都是一台能够创建模仿或接近人类能力的内容的机器。
生成性AI是传统机器学习的一个子集。支撑生成性AI的机器学习模型通过在由人类最初生成的大量内容数据集中找到统计模式来学习这些能力。大型语言模型经过数周和数月的时间,在数万亿的词上进行了训练,并使用了大量的计算能力。我们称之为基础模型的这些模型,拥有数十亿的参数,展现出超越语言本身的突现性质,研究人员正在解锁它们分解复杂任务、推理和解决问题的能力。

这里是一系列基础模型的集合,有时被称为基础模型,以及它们在参数方面的相对大小。稍后您将更详细地了解这些参数,但现在,请将它们视为模型的记忆。模型的参数越多,记忆就越多,事实证明,它可以执行的任务也越复杂。在整个课程中,我们将用这些紫色的圆圈代表LLM,在实验室中,您将使用一个特定的开源模型,flan-T5,来执行语言任务。通过直接使用这些模型或应用微调技术将它们适应您的特定用例,您可以迅速构建定制解决方案,而无需从头开始训练新模型。
现在,虽然为多种模式创建了生成性AI模型,包括图像、视频、音频和语音,但在这门课程中,您将重点关注大型语言模型及其在自然语言生成中的用途。您将了解它们是如何构建和训练的,如何通过文本与它们互动,这些文本被称为提示。以及如何为您的用例和数据微调模型,以及如何与应用程序一起部署它们来解决您的商业和社会任务。
与语言模型互动的方式与其他机器学习和编程范式大不相同。在那些情况下,您使用正式化的语法编写计算机代码与库和API互动。相反,大型语言模型能够接受自然语言或人类编写的指令,并像人类一样执行任务。您传递给LLM的文本被称为提示。可用于提示的空间或记忆称为上下文窗口,这通常足够容纳几千个词,但因模型而异。

在这个例子中,您要求模型确定Ganymede在太阳系中的位置。提示传递给模型,模型然后预测下一个词,因为您的提示包含了一个问题,这个模型生成了一个答案。模型的输出称为完成,使用模型生成文本的行为称为推断。完成包括原始提示中包含的文本,后跟生成的文本。您可以看到这个模型很好地回答了您的问题。它正确地识别出Ganymede是木星的一颗卫星,并为您的问题生成了一个合理的答案,说明这颗卫星位于木星的轨道内。
在整个课程中,您将看到许多这种风格的提示和完成的示例。

参考
- https://www.coursera.org/programs/hsbc-finance-people-and-personal-development-dnger/learn/generative-ai-with-llms
- https://www.coursera.org/learn/generative-ai-with-llms/lecture/IrsEw/generative-ai-llms
相关文章:
生成式AI和大语言模型 Generative AI LLMs
在“使用大型语言模型(LLMs)的生成性AI”中,您将学习生成性AI的基本工作原理,以及如何在实际应用中部署它。 通过参加这门课程,您将学会: 深入了解生成性AI,描述基于LLM的典型生成性AI生命周期中的关键步骤ÿ…...
Obsidian 入门使用手册
文章目录 一、Obsidian 入门1.1 什么是 Obsidian1.2 安装 Obsidian 二、Obsidian 配置2.1 创建第一个笔记2.2 设置界面语言使用中文2.3 主题 三、小结 一、Obsidian 入门 1.1 什么是 Obsidian Obsidian 是一款基于 Markdown 语法编辑的笔记软件。与传统的 Markdown 软件不同的…...
GuLi商城-前端基础Vue指令-单向绑定双向绑定
什么是指令? 指令 (Directives) 是带有 v- 前缀的特殊特性。 指令特性的预期值是:单个 JavaScript 表达式。 指令的职责是,当表达式的值改变时,将其产生的连带影响,响应式地作用于DOM 例如我们在入门案例中的 v-on,代表绑定事…...
前端(十三)——JavaScript 闭包的奥秘与高级用法探索
😶博主:小猫娃来啦 😶文章核心:深入理解 JavaScript 中的闭包 文章目录 不理解闭包?这玩意很难?闭包的定义与原理闭包是什么创建一个闭包 闭包的应用场景闭包与作用域闭包与作用域之间的关系全局作用域、函…...
面试-快速学习计算机网络-UDP/TCP
1. OSI四层和七层映射 区别: 应用层,表示层,会话层合并为了应用层数据链路层和物理层合并为了网络接口层 2. TCP和UDP的区别? 总结: 1 . TCP 向上层提供面向连接的可靠服务 ,UDP 向上层提供无连接不可靠服…...
爱校对如何帮助企业和博客主提高在线可见性?
在数字化时代,内容质量已经成为增强在线曝光率的关键因素。企业和博客主经常面临挑战,如何制作高质量、无误的内容以吸引更多的在线用户。此文将详细分析“爱校对”如何帮助用户优化内容,从而提高在线可见性。 1.互联网内容的挑战 搜索引擎…...
MATLAB中xlsread函数用法
目录 语法 说明 示例 将工作表读取到数值矩阵 读取元胞的范围 读取列 请求数值、文本和原始数据 对工作表执行函数 请求自定义输出 局限性 xlsread函数的功能是读取Microsoft Excel 电子表格文件 语法 num xlsread(filename) num xlsread(filename,sheet) num x…...
Prisma.js:JavaScript中的基于代码的ORM
Prisma是一种流行的用于服务器端JavaScript和TypeScript的数据映射层(ORM)。它的核心目的是简化和自动化数据在存储和应用程序代码之间的传输方式。Prisma支持各种数据存储,并为数据持久化提供了一个强大而灵活的抽象层。通过这个基于代码的…...
解决问题:在cocos create中如何从b文件调用到a文件里用CC.resource.load动态加载的图集
目录 1.在a文件中定义一个公共的变量存储动态加载的图集 2.在a.js中添加一个静态方法,返回动态加载的图集 3.在b.js中使用a.js中定义的静态方法获取图集,并使用它 假设a文件中用CC.resource.load动态加载了一张图集,b文件需要使用这张图集&am…...
分布式 - 消息队列Kafka:Kafka 消费者消费位移的提交方式
文章目录 1. 自动提交消费位移2. 自动提交消费位移存在的问题?3. 手动提交消费位移1. 同步提交消费位移2. 异步提交消费位移3. 同步和异步组合提交消费位移4. 提交特定的消费位移5. 按分区提交消费位移 4. 消费者查找不到消费位移时怎么办?5. 如何从特定…...
如何利用 ChatGPT 进行自动数据清理和预处理
推荐:使用 NSDT场景编辑器助你快速搭建可二次编辑的3D应用场景 ChatGPT 已经成为一把可用于多种应用的瑞士军刀,并且有大量的空间将 ChatGPT 集成到数据科学工作流程中。 如果您曾经在真实数据集上训练过机器学习模型,您就会知道数据清理和预…...
PHP“牵手”淘宝商品评论数据采集方法,淘宝API接口申请指南
淘宝天猫商品评论数据接口 API 是开放平台提供的一种 API 接口,它可以帮助开发者获取商品的详细信息,包括商品的标题、描述、图片等信息。在电商平台的开发中,详情接口API是非常常用的 API,因此本文将详细介绍详情接口 API 的使用…...
你更喜欢哪一个:VueJS 还是 ReactJS?
观点列表: 1、如果你想在 HTML 中使用 JS,请使用 Vue; 如果你想在 JS 中使用 HTML,请使用 React。 当然,如果您希望在 JS 中使用 HTML,请将 Vue 与 JSX 结合使用。 2、Svelte:我喜欢它&#…...
PyTorch学习笔记(十六)——利用GPU训练
一、方式一 网络模型、损失函数、数据(包括输入、标注) 找到以上三种变量,调用它们的.cuda(),再返回即可 if torch.cuda.is_available():mynn mynn.cuda() if torch.cuda.is_available():loss_function loss_function.cuda(…...
【实战】十一、看板页面及任务组页面开发(三) —— React17+React Hook+TS4 最佳实践,仿 Jira 企业级项目(二十五)
文章目录 一、项目起航:项目初始化与配置二、React 与 Hook 应用:实现项目列表三、TS 应用:JS神助攻 - 强类型四、JWT、用户认证与异步请求五、CSS 其实很简单 - 用 CSS-in-JS 添加样式六、用户体验优化 - 加载中和错误状态处理七、Hook&…...
金额千位符自定义指令
自定义指令文件 moneyFormat.js /*** v-money 金额千分位转换*/export default {inserted: inputFormatter({// 格式化函数formatter(num, util) {if(num null || num || num undefined || typeof(num) undefined){return }if(util 万元 || util 万){return formatMone…...
请不要用 JSON 作为配置文件,使用JSON做配置文件的缺点
我最近关注到有的项目使用JSON作为配置文件。我觉得这不是个好主意。 这不是JSON的设计目的,因此也不是它擅长的。JSON旨在成为一种“轻量级数据交换格式”,并声称它“易于人类读写”和“易于机器解析和生成”。 作为一种数据交换格式,JSON是…...
Hadabot:从网络浏览器操作 ROS2 远程控制器
一、说明 Hadabot Hadabot是一个学习ROS2和机器人技术的机器人套件。使用 Hadabot,您将能够以最小的挫败感和恐吓来构建和编程物理 ROS2 机器人。Hadabot套件目前正在开发中。它将仅针对ROS2功能,并强调基于Web的用户界面。 随着开发的进展&a…...
Kotlin 协程
Kotlin 协程(Coroutines)是一种轻量级的并发编程解决方案,旨在简化异步操作和多线程编程。它提供了一种顺序和非阻塞的方式来处理并发任务,使得代码可以更加简洁和易于理解。Kotlin 协程通过提供一套高级 API,使并发代…...
maven 从官网下载指定版本
1. 进入官网下载页面 Maven – Download Apache Maven 点击下图所示链接 2. 进入文件页,选择需要的版本 3. 选binaries 4. 选文件,下载即可...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
