基于Pytorch实现的声纹识别系统
前言
本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,不排除以后会支持更多模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对应项目中的AAMLoss,对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接,除此之外,还支持AMLoss、ARMLoss、CELoss等多种损失函数。
源码地址:VoiceprintRecognition-Pytorch
使用环境:
- Anaconda 3
- Python 3.8
- Pytorch 1.13.1
- Windows 10 or Ubuntu 18.04
项目特性
- 支持模型:EcapaTdnn、TDNN、Res2Net、ResNetSE、ERes2Net、CAM++
- 支持池化层:AttentiveStatsPool(ASP)、SelfAttentivePooling(SAP)、TemporalStatisticsPooling(TSP)、TemporalAveragePooling(TAP)、TemporalStatsPool(TSTP)
- 支持损失函数:AAMLoss、AMLoss、ARMLoss、CELoss
- 支持预处理方法:MelSpectrogram、Spectrogram、MFCC、Fbank
模型论文:
- EcapaTdnn:ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification
- PANNS:PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
- TDNN:Prediction of speech intelligibility with DNN-based performance measures
- Res2Net:Res2Net: A New Multi-scale Backbone Architecture
- ResNetSE:Squeeze-and-Excitation Networks
- CAMPPlus:CAM++: A Fast and Efficient Network for Speaker Verification Using Context-Aware Masking
- ERes2Net:An Enhanced Res2Net with Local and Global Feature Fusion for Speaker Verification
模型下载
模型 | Params(M) | 预处理方法 | 数据集 | train speakers | threshold | EER | MinDCF |
---|---|---|---|---|---|---|---|
CAM++ | 7.5 | Fbank | CN-Celeb | 2796 | 0.26 | 0.09557 | 0.53516 |
ERes2Net | 8.2 | Fbank | CN-Celeb | 2796 | |||
ResNetSE | 9.4 | Fbank | CN-Celeb | 2796 | 0.20 | 0.10149 | 0.55185 |
EcapaTdnn | 6.7 | Fbank | CN-Celeb | 2796 | 0.24 | 0.10163 | 0.56543 |
TDNN | 3.2 | Fbank | CN-Celeb | 2796 | 0.23 | 0.12182 | 0.62141 |
Res2Net | 6.6 | Fbank | CN-Celeb | 2796 | 0.22 | 0.14390 | 0.67961 |
ERes2Net | 8.2 | Fbank | 其他数据集 | 20W | 0.36 | 0.02936 | 0.18355 |
CAM++ | 7.5 | Fbank | 其他数据集 | 20W | 0.29 | 0.04765 | 0.31436 |
说明:
- 评估的测试集为CN-Celeb的测试集,包含196个说话人。
安装环境
- 首先安装的是Pytorch的GPU版本,如果已经安装过了,请跳过。
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
- 安装ppvector库。
使用pip安装,命令如下:
python -m pip install mvector -U -i https://pypi.tuna.tsinghua.edu.cn/simple
建议源码安装,源码安装能保证使用最新代码。
git clone https://github.com/yeyupiaoling/VoiceprintRecognition-Pytorch.git
cd VoiceprintRecognition-Pytorch/
python setup.py install
创建数据
本教程笔者使用的是CN-Celeb,这个数据集一共有约3000个人的语音数据,有65W+条语音数据,下载之后要解压数据集到dataset
目录,另外如果要评估,还需要下载CN-Celeb的测试集。如果读者有其他更好的数据集,可以混合在一起使用,但最好是要用python的工具模块aukit处理音频,降噪和去除静音。
首先是创建一个数据列表,数据列表的格式为<语音文件路径\t语音分类标签>
,创建这个列表主要是方便之后的读取,也是方便读取使用其他的语音数据集,语音分类标签是指说话人的唯一ID,不同的语音数据集,可以通过编写对应的生成数据列表的函数,把这些数据集都写在同一个数据列表中。
执行create_data.py
程序完成数据准备。
python create_data.py
执行上面的程序之后,会生成以下的数据格式,如果要自定义数据,参考如下数据列表,前面是音频的相对路径,后面的是该音频对应的说话人的标签,就跟分类一样。自定义数据集的注意,测试数据列表的ID可以不用跟训练的ID一样,也就是说测试的数据的说话人可以不用出现在训练集,只要保证测试数据列表中同一个人相同的ID即可。
dataset/CN-Celeb2_flac/data/id11999/recitation-03-019.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-023.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-06-025.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-04-014.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-06-030.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-032.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-06-028.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-031.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-05-003.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-04-017.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-016.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-09-001.flac 2795
dataset/CN-Celeb2_flac/data/id11999/recitation-05-010.flac 2795
修改预处理方法
配置文件中默认使用的是Fbank预处理方法,如果要使用其他预处理方法,可以修改配置文件中的安装下面方式修改,具体的值可以根据自己情况修改。如果不清楚如何设置参数,可以直接删除该部分,直接使用默认值。
# 数据预处理参数
preprocess_conf:# 音频预处理方法,支持:MelSpectrogram、Spectrogram、MFCC、Fbankfeature_method: 'Fbank'# 设置API参数,更参数查看对应API,不清楚的可以直接删除该部分,直接使用默认值method_args:sample_frequency: 16000num_mel_bins: 80
训练模型
使用train.py
训练模型,本项目支持多个音频预处理方式,通过configs/ecapa_tdnn.yml
配置文件的参数preprocess_conf.feature_method
可以指定,MelSpectrogram
为梅尔频谱,Spectrogram
为语谱图,MFCC
梅尔频谱倒谱系数等等。通过参数augment_conf_path
可以指定数据增强方式。训练过程中,会使用VisualDL保存训练日志,通过启动VisualDL可以随时查看训练结果,启动命令visualdl --logdir=log --host 0.0.0.0
# 单卡训练
CUDA_VISIBLE_DEVICES=0 python train.py
# 多卡训练
CUDA_VISIBLE_DEVICES=0,1 torchrun --standalone --nnodes=1 --nproc_per_node=2 train.py
训练输出日志:
[2023-08-05 09:52:06.497988 INFO ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-08-05 09:52:06.498094 INFO ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-08-05 09:52:06.498149 INFO ] utils:print_arguments:15 - do_eval: True
[2023-08-05 09:52:06.498191 INFO ] utils:print_arguments:15 - local_rank: 0
[2023-08-05 09:52:06.498230 INFO ] utils:print_arguments:15 - pretrained_model: None
[2023-08-05 09:52:06.498269 INFO ] utils:print_arguments:15 - resume_model: None
[2023-08-05 09:52:06.498306 INFO ] utils:print_arguments:15 - save_model_path: models/
[2023-08-05 09:52:06.498342 INFO ] utils:print_arguments:15 - use_gpu: True
[2023-08-05 09:52:06.498378 INFO ] utils:print_arguments:16 - ------------------------------------------------
[2023-08-05 09:52:06.513761 INFO ] utils:print_arguments:18 - ----------- 配置文件参数 -----------
[2023-08-05 09:52:06.513906 INFO ] utils:print_arguments:21 - dataset_conf:
[2023-08-05 09:52:06.513957 INFO ] utils:print_arguments:24 - dataLoader:
[2023-08-05 09:52:06.513995 INFO ] utils:print_arguments:26 - batch_size: 64
[2023-08-05 09:52:06.514031 INFO ] utils:print_arguments:26 - num_workers: 4
[2023-08-05 09:52:06.514066 INFO ] utils:print_arguments:28 - do_vad: False
[2023-08-05 09:52:06.514101 INFO ] utils:print_arguments:28 - enroll_list: dataset/enroll_list.txt
[2023-08-05 09:52:06.514135 INFO ] utils:print_arguments:24 - eval_conf:
[2023-08-05 09:52:06.514169 INFO ] utils:print_arguments:26 - batch_size: 1
[2023-08-05 09:52:06.514203 INFO ] utils:print_arguments:26 - max_duration: 20
[2023-08-05 09:52:06.514237 INFO ] utils:print_arguments:28 - max_duration: 3
[2023-08-05 09:52:06.514274 INFO ] utils:print_arguments:28 - min_duration: 0.5
[2023-08-05 09:52:06.514308 INFO ] utils:print_arguments:28 - noise_aug_prob: 0.2
[2023-08-05 09:52:06.514342 INFO ] utils:print_arguments:28 - noise_dir: dataset/noise
[2023-08-05 09:52:06.514374 INFO ] utils:print_arguments:28 - num_speakers: 3242
[2023-08-05 09:52:06.514408 INFO ] utils:print_arguments:28 - sample_rate: 16000
[2023-08-05 09:52:06.514441 INFO ] utils:print_arguments:28 - speed_perturb: True
[2023-08-05 09:52:06.514475 INFO ] utils:print_arguments:28 - target_dB: -20
[2023-08-05 09:52:06.514508 INFO ] utils:print_arguments:28 - train_list: dataset/train_list.txt
[2023-08-05 09:52:06.514542 INFO ] utils:print_arguments:28 - trials_list: dataset/trials_list.txt
[2023-08-05 09:52:06.514575 INFO ] utils:print_arguments:28 - use_dB_normalization: True
[2023-08-05 09:52:06.514609 INFO ] utils:print_arguments:21 - loss_conf:
[2023-08-05 09:52:06.514643 INFO ] utils:print_arguments:24 - args:
[2023-08-05 09:52:06.514678 INFO ] utils:print_arguments:26 - easy_margin: False
[2023-08-05 09:52:06.514713 INFO ] utils:print_arguments:26 - margin: 0.2
[2023-08-05 09:52:06.514746 INFO ] utils:print_arguments:26 - scale: 32
[2023-08-05 09:52:06.514779 INFO ] utils:print_arguments:24 - margin_scheduler_args:
[2023-08-05 09:52:06.514814 INFO ] utils:print_arguments:26 - final_margin: 0.3
[2023-08-05 09:52:06.514848 INFO ] utils:print_arguments:28 - use_loss: AAMLoss
[2023-08-05 09:52:06.514882 INFO ] utils:print_arguments:28 - use_margin_scheduler: True
[2023-08-05 09:52:06.514915 INFO ] utils:print_arguments:21 - model_conf:
[2023-08-05 09:52:06.514950 INFO ] utils:print_arguments:24 - backbone:
[2023-08-05 09:52:06.514984 INFO ] utils:print_arguments:26 - embd_dim: 192
[2023-08-05 09:52:06.515017 INFO ] utils:print_arguments:26 - pooling_type: ASP
[2023-08-05 09:52:06.515050 INFO ] utils:print_arguments:24 - classifier:
[2023-08-05 09:52:06.515084 INFO ] utils:print_arguments:26 - num_blocks: 0
[2023-08-05 09:52:06.515118 INFO ] utils:print_arguments:21 - optimizer_conf:
[2023-08-05 09:52:06.515154 INFO ] utils:print_arguments:28 - learning_rate: 0.001
[2023-08-05 09:52:06.515188 INFO ] utils:print_arguments:28 - optimizer: Adam
[2023-08-05 09:52:06.515221 INFO ] utils:print_arguments:28 - scheduler: CosineAnnealingLR
[2023-08-05 09:52:06.515254 INFO ] utils:print_arguments:28 - scheduler_args: None
[2023-08-05 09:52:06.515289 INFO ] utils:print_arguments:28 - weight_decay: 1e-06
[2023-08-05 09:52:06.515323 INFO ] utils:print_arguments:21 - preprocess_conf:
[2023-08-05 09:52:06.515357 INFO ] utils:print_arguments:28 - feature_method: MelSpectrogram
[2023-08-05 09:52:06.515390 INFO ] utils:print_arguments:24 - method_args:
[2023-08-05 09:52:06.515426 INFO ] utils:print_arguments:26 - f_max: 14000.0
[2023-08-05 09:52:06.515460 INFO ] utils:print_arguments:26 - f_min: 50.0
[2023-08-05 09:52:06.515493 INFO ] utils:print_arguments:26 - hop_length: 320
[2023-08-05 09:52:06.515527 INFO ] utils:print_arguments:26 - n_fft: 1024
[2023-08-05 09:52:06.515560 INFO ] utils:print_arguments:26 - n_mels: 64
[2023-08-05 09:52:06.515593 INFO ] utils:print_arguments:26 - sample_rate: 16000
[2023-08-05 09:52:06.515626 INFO ] utils:print_arguments:26 - win_length: 1024
[2023-08-05 09:52:06.515660 INFO ] utils:print_arguments:21 - train_conf:
[2023-08-05 09:52:06.515694 INFO ] utils:print_arguments:28 - log_interval: 100
[2023-08-05 09:52:06.515728 INFO ] utils:print_arguments:28 - max_epoch: 30
[2023-08-05 09:52:06.515761 INFO ] utils:print_arguments:30 - use_model: EcapaTdnn
[2023-08-05 09:52:06.515794 INFO ] utils:print_arguments:31 - ------------------------------------------------
······
===============================================================================================
Layer (type:depth-idx) Output Shape Param #
===============================================================================================
Sequential [1, 9726] --
├─EcapaTdnn: 1-1 [1, 192] --
│ └─Conv1dReluBn: 2-1 [1, 512, 98] --
│ │ └─Conv1d: 3-1 [1, 512, 98] 163,840
│ │ └─BatchNorm1d: 3-2 [1, 512, 98] 1,024
│ └─Sequential: 2-2 [1, 512, 98] --
│ │ └─Conv1dReluBn: 3-3 [1, 512, 98] 263,168
│ │ └─Res2Conv1dReluBn: 3-4 [1, 512, 98] 86,912
│ │ └─Conv1dReluBn: 3-5 [1, 512, 98] 263,168
│ │ └─SE_Connect: 3-6 [1, 512, 98] 262,912
│ └─Sequential: 2-3 [1, 512, 98] --
│ │ └─Conv1dReluBn: 3-7 [1, 512, 98] 263,168
│ │ └─Res2Conv1dReluBn: 3-8 [1, 512, 98] 86,912
│ │ └─Conv1dReluBn: 3-9 [1, 512, 98] 263,168
│ │ └─SE_Connect: 3-10 [1, 512, 98] 262,912
│ └─Sequential: 2-4 [1, 512, 98] --
│ │ └─Conv1dReluBn: 3-11 [1, 512, 98] 263,168
│ │ └─Res2Conv1dReluBn: 3-12 [1, 512, 98] 86,912
│ │ └─Conv1dReluBn: 3-13 [1, 512, 98] 263,168
│ │ └─SE_Connect: 3-14 [1, 512, 98] 262,912
│ └─Conv1d: 2-5 [1, 1536, 98] 2,360,832
│ └─AttentiveStatsPool: 2-6 [1, 3072] --
│ │ └─Conv1d: 3-15 [1, 128, 98] 196,736
│ │ └─Conv1d: 3-16 [1, 1536, 98] 198,144
│ └─BatchNorm1d: 2-7 [1, 3072] 6,144
│ └─Linear: 2-8 [1, 192] 590,016
│ └─BatchNorm1d: 2-9 [1, 192] 384
├─SpeakerIdentification: 1-2 [1, 9726] 1,867,392
===============================================================================================
Total params: 8,012,992
Trainable params: 8,012,992
Non-trainable params: 0
Total mult-adds (M): 468.81
===============================================================================================
Input size (MB): 0.03
Forward/backward pass size (MB): 10.36
Params size (MB): 32.05
Estimated Total Size (MB): 42.44
===============================================================================================
[2023-08-05 09:52:08.084231 INFO ] trainer:train:388 - 训练数据:874175
[2023-08-05 09:52:09.186542 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [0/13659], loss: 11.95824, accuracy: 0.00000, learning rate: 0.00100000, speed: 58.09 data/sec, eta: 5 days, 5:24:08
[2023-08-05 09:52:22.477905 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [100/13659], loss: 10.35675, accuracy: 0.00278, learning rate: 0.00100000, speed: 481.65 data/sec, eta: 15:07:15
[2023-08-05 09:52:35.948581 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [200/13659], loss: 10.22089, accuracy: 0.00505, learning rate: 0.00100000, speed: 475.27 data/sec, eta: 15:19:12
[2023-08-05 09:52:49.249098 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [300/13659], loss: 10.00268, accuracy: 0.00706, learning rate: 0.00100000, speed: 481.45 data/sec, eta: 15:07:11
[2023-08-05 09:53:03.716015 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [400/13659], loss: 9.76052, accuracy: 0.00830, learning rate: 0.00100000, speed: 442.74 data/sec, eta: 16:26:16
[2023-08-05 09:53:18.258807 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [500/13659], loss: 9.50189, accuracy: 0.01060, learning rate: 0.00100000, speed: 440.46 data/sec, eta: 16:31:08
[2023-08-05 09:53:31.618354 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [600/13659], loss: 9.26083, accuracy: 0.01256, learning rate: 0.00100000, speed: 479.50 data/sec, eta: 15:10:12
[2023-08-05 09:53:45.439642 INFO ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [700/13659], loss: 9.03548, accuracy: 0.01449, learning rate: 0.00099999, speed: 463.63 data/sec, eta: 15:41:08
VisualDL页面:
评估模型
训练结束之后会保存预测模型,我们用预测模型来预测测试集中的音频特征,然后使用音频特征进行两两对比,计算EER和MinDCF。
python eval.py
输出类似如下:
······
------------------------------------------------
W0425 08:27:32.057426 17654 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:27:32.065165 17654 device_context.cc:465] device: 0, cuDNN Version: 7.6.
[2023-03-16 20:20:47.195908 INFO ] trainer:evaluate:341 - 成功加载模型:models/EcapaTdnn_Fbank/best_model/model.pth
100%|███████████████████████████| 84/84 [00:28<00:00, 2.95it/s]
开始两两对比音频特征...
100%|███████████████████████████| 5332/5332 [00:05<00:00, 1027.83it/s]
评估消耗时间:65s,threshold:0.26,EER: 0.14739, MinDCF: 0.41999
声纹对比
下面开始实现声纹对比,创建infer_contrast.py
程序,编写infer()
函数,在编写模型的时候,模型是有两个输出的,第一个是模型的分类输出,第二个是音频特征输出。所以在这里要输出的是音频的特征值,有了音频的特征值就可以做声纹识别了。我们输入两个语音,通过预测函数获取他们的特征数据,使用这个特征数据可以求他们的对角余弦值,得到的结果可以作为他们相识度。对于这个相识度的阈值threshold
,读者可以根据自己项目的准确度要求进行修改。
python infer_contrast.py --audio_path1=audio/a_1.wav --audio_path2=audio/b_2.wav
输出类似如下:
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:15 - audio_path1: dataset/a_1.wav
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:15 - audio_path2: dataset/b_2.wav
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:15 - model_path: models/EcapaTdnn_Fbank/best_model/
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:15 - threshold: 0.6
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:15 - use_gpu: True
[2023-04-02 18:30:48.009149 INFO ] utils:print_arguments:16 - ------------------------------------------------
······································································
W0425 08:29:10.006249 21121 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:29:10.008555 21121 device_context.cc:465] device: 0, cuDNN Version: 7.6.
成功加载模型参数和优化方法参数:models/EcapaTdnn_Fbank/best_model/model.pth
audio/a_1.wav 和 audio/b_2.wav 不是同一个人,相似度为:-0.09565544128417969
声纹识别
在上面的声纹对比的基础上,我们创建infer_recognition.py
实现声纹识别。同样是使用上面声纹对比的infer()
预测函数,通过这两个同样获取语音的特征数据。 不同的是笔者增加了load_audio_db()
和register()
,以及recognition()
,第一个函数是加载声纹库中的语音数据,这些音频就是相当于已经注册的用户,他们注册的语音数据会存放在这里,如果有用户需要通过声纹登录,就需要拿到用户的语音和语音库中的语音进行声纹对比,如果对比成功,那就相当于登录成功并且获取用户注册时的信息数据。第二个函数register()
其实就是把录音保存在声纹库中,同时获取该音频的特征添加到待对比的数据特征中。最后recognition()
函数中,这个函数就是将输入的语音和语音库中的语音一一对比。
有了上面的声纹识别的函数,读者可以根据自己项目的需求完成声纹识别的方式,例如笔者下面提供的是通过录音来完成声纹识别。首先必须要加载语音库中的语音,语音库文件夹为audio_db
,然后用户回车后录音3秒钟,然后程序会自动录音,并使用录音到的音频进行声纹识别,去匹配语音库中的语音,获取用户的信息。通过这样方式,读者也可以修改成通过服务请求的方式完成声纹识别,例如提供一个API供APP调用,用户在APP上通过声纹登录时,把录音到的语音发送到后端完成声纹识别,再把结果返回给APP,前提是用户已经使用语音注册,并成功把语音数据存放在audio_db
文件夹中。
python infer_recognition.py
输出类似如下:
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:15 - audio_db_path: audio_db/
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:15 - model_path: models/EcapaTdnn_Fbank/best_model/
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:15 - record_seconds: 3
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:15 - threshold: 0.6
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:15 - use_gpu: True
[2023-04-02 18:31:20.521040 INFO ] utils:print_arguments:16 - ------------------------------------------------
······································································
W0425 08:30:13.257884 23889 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:30:13.260191 23889 device_context.cc:465] device: 0, cuDNN Version: 7.6.
成功加载模型参数和优化方法参数:models/ecapa_tdnn/model.pth
Loaded 沙瑞金 audio.
Loaded 李达康 audio.
请选择功能,0为注册音频到声纹库,1为执行声纹识别:0
按下回车键开机录音,录音3秒中:
开始录音......
录音已结束!
请输入该音频用户的名称:夜雨飘零
请选择功能,0为注册音频到声纹库,1为执行声纹识别:1
按下回车键开机录音,录音3秒中:
开始录音......
录音已结束!
识别说话的为:夜雨飘零,相似度为:0.920434
其他版本
- Tensorflow:VoiceprintRecognition-Tensorflow
- PaddlePaddle:VoiceprintRecognition-PaddlePaddle
- Keras:VoiceprintRecognition-Keras
参考资料
- https://github.com/PaddlePaddle/PaddleSpeech
- https://github.com/yeyupiaoling/PaddlePaddle-MobileFaceNets
- https://github.com/yeyupiaoling/PPASR
- https://github.com/alibaba-damo-academy/3D-Speaker
相关文章:

基于Pytorch实现的声纹识别系统
前言 本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM等多种先进的声纹识别模型,不排除以后会支持更多模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法,使用了ArcFace Loss,ArcFace loss…...

Fast DDS (2)
1、结构: Fast DDS的架构如下图所示,可以看到以下不同环境的层模型: 应用层:利用Fast DDS API 在分布式系统中实现通信的用户应用程序。Fast DDS层:DDS 通信中间件的稳健实现。它允许部署一个或多个 DDS 域ÿ…...
HarmonyOS/OpenHarmony应用开发-ArkTS语言渲染控制if/else条件渲染
ArkTS提供了渲染控制的能力。条件渲染可根据应用的不同状态,使用if、else和else if渲染对应状态下的UI内容。说明:从API version 9开始,该接口支持在ArkTS卡片中使用。一、使用规则 支持if、else和else if语句。 if、else if后跟随的条件语句…...

飞天使-k8s基础组件分析-pod
文章目录 pod介绍pod 生命周期init 容器容器handlerpod中容器共享进程空间sidecar 容器共享 参考链接 pod介绍 最小的容器单元 为啥需要pod? 答: 多个进程丢一个容器里,会因为容器里个别进程出问题而出现蝴蝶效应,pod 是更高级的处理方式pod 如何共享相…...
css题库
什么是css? CSS 是“Cascading Style Sheet”的缩写,中文意思为“层叠样式表”,它是一种标准的样式表语言,用于描述网页的表现形式(例如网页元素的位置、大小、颜色等)。 为什么最好把 CSS 的 link 标签放在…...
中文医疗大模型汇总
【写在前面】随着大语言模型的发展,越来越多的垂直领域的LLM发不出来,针对医学这一垂直领域的LLM进行整理,放在这里,希望对大家有一定的帮助吧。还会继续更新,大家有兴趣的话可以持续关注。 更多关于中文医疗自然语言处…...

smiley-http-proxy-servlet 实现springboot 接口反向代理,站点代理,项目鉴权,安全的引入第三方项目服务
背景: 项目初期 和硬件集成,实现了些功能服务,由于是局域网环境,安全问题当时都可以最小化无视。随着对接的服务越来越多,部分功能上云,此时就需要有一种手段可以控制到其他项目/接口的访问权限。 无疑 反向…...

Java集合利器 Map Set
Map & Set 一、概念二、Map三、Set下期预告 一、概念 Map和Set是一种专门用来进行搜索的数据结构,其搜索的效率与其具体的实例化子类有关。它们分别定义了两种不同的数据结构和特点: Map(映射) :Map是一种键值对&…...
HJ106 字符逆序
描述 将一个字符串str的内容颠倒过来,并输出。 数据范围:1≤len(str)≤10000 1≤len(str)≤10000 输入描述: 输入一个字符串,可以有空格 输出描述: 输出逆序的字符串 示例1 输入: I am a student 输…...

sentinel的基本使用
在一些互联网项目中高并发的场景很多,瞬间流量很大,会导致我们服务不可用。 sentinel则可以保证我们服务的正常运行,提供限流、熔断、降级等方法来实现 一.限流: 1.导入坐标 <dependency><groupId>com.alibaba.c…...

【STM32】串口通信乱码(认识系统时钟来源)
使用 stm32f407 与电脑主机进行串口通信时,串口助手打印乱码,主要从以下方面进行排查: 检查传输协议设置是否一致(波特率、数据位、停止位、校验位)检查MCU外部晶振频率是否和库函数设置的一致 最终发现是外部晶振频…...

Java实现敏感词过滤功能
敏感词过滤功能实现 1.GitHub上下载敏感词文件 2.将敏感词文件放在resources目录下 在业务中可以将文本中的敏感词写入数据库便于管理。 3.提供实现类demo 代码编写思路如下:1.将敏感词加载到list中,2.添加到StringSearch中,3.校验&#x…...
大数据向量检索的细节问题
背景:现有亿级别数据(条数),其文本大小约为150G,label为字符串,content为文本。用于向量检索,采用上次的试验进行,但有如下问题需要面对: 1、向量维度及所需空间 向量维度一版采用768的bert系列的模型推理得到,openai也有类似的功能,不过是2倍的维度(即1536),至…...

如何让智能搜索引擎更灵活、更高效?
随着互联网的发展和普及,搜索引擎已经成为人们获取信息、解决问题的主要工具之一。 然而,传统的搜索引擎在面对大数据时,往往存在着搜索效率低下、搜索结果精准度不够等问题。 为了解决这些问题,越来越多的企业开始采用智能搜索技…...
C++set集合与并查集map映射,哈希表应用实例B3632 集合运算 1P1918 保龄球
集合的性质 无序性互异性确定性 B3632 集合运算 1 题面 题目背景 集合是数学中的一个概念,用通俗的话来讲就是:一大堆数在一起就构成了集合。 集合有如下的特性: 无序性:任一个集合中,每个元素的地位都是相同的&…...

easyexcel合并单元格底色
一、效果图 二、导出接口代码 PostMapping("selectAllMagicExport")public void selectAllMagicExport(HttpServletRequest request, HttpServletResponse response) throws IOException {ServiceResult<SearchResult<TestMetLineFe2o3Export>> result …...

OpenCV图片校正
OpenCV图片校正 背景几种校正方法1.傅里叶变换 霍夫变换 直线 角度 旋转3.四点透视 角度 旋转4.检测矩形轮廓 角度 旋转参考 背景 遇到偏的图片想要校正成水平或者垂直的。 几种校正方法 对于倾斜的图片通过矫正可以得到水平的图片。一般有如下几种基于opencv的组合方…...

数字孪生流域共建共享相关政策解读
当前数字孪生技术在水利方面的应用刚起步,2021年水利部首次提出“数字孪生流域”概念,即以物理流域为单元、时空数据为底座、数学模型为核心、水利知识为驱动,对物理流域全要素和水利治理管理活动全过程的数字映射、智能模拟、前瞻预演&#…...

FSC147数据集格式解析
一. 引言 在研究很多深度学习框架的时候,往往需要使用到FSC147格式数据集,若要是想在自己的数据集上验证深度学习框架,就需要自己制作数据集以及相关标签,在论文Learning To Count Everything中,该数据集首次被提出。 …...
el-element中el-tabs案例的使用
el-element中el-tabs的使用 代码呈现 <template><div class"enterprise-audit"><div class"card"><div class"cardTitle"><p>交易查询</p></div><el-tabs v-model"activeName" tab-cl…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
省略号和可变参数模板
本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...

tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

前端开发者常用网站
Can I use网站:一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use:Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站:MDN JavaScript权威网站:JavaScript | MDN...