回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)
目录
- 回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览



基本介绍
回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)效果一览基本…...
【前端从0开始】JavaSript——循环控制语句
循环控制语句 while语句 While 循环会在指定条件为真时循环执行代码块。 While循环,先进行条件判断,再执行循环体的代码 while (条件表达式){循环体 }注意:当前循环中,如果不满足条件,一次都不会执行 var i 1; whi…...
【Elasticsearch】spring-boot-starter-data-elasticsearch的使用以及Elasticsearch集群的连接
更多有关博主写的往期Elasticsearch文章 标题地址【ElasticSearch 集群】Linux安装ElasticSearch集群(图文解说详细版)https://masiyi.blog.csdn.net/article/details/131109454基于SpringBootElasticSearch 的Java底层框架的实现https://masiyi.blog.c…...
Python学习笔记_进阶篇(四)_django知识(三)
本章内容: Django 发送邮件Django cookieDjango sessionDjango CSRF Django 发送邮件 我们常常会用到一些发送邮件的功能,比如有人提交了应聘的表单,可以向HR的邮箱发邮件,这样,HR不看网站就可以知道有人在网站上提…...
指针(初阶)
1. 指针是什么? 指针是什么? 指针理解的2个要点: 1. 指针是内存中一个最小单元的编号,也就是地址 2. 平时口语中说的指针,通常指的是指针变量,是用来存放内存地址的变量 总结:指针就是地址&…...
Flink内核源码解析--Flink中重要的工作组件和机制
Flink内核源码 1、掌握Flink应用程序抽象2、掌握Flink核心组件整体架构抽象3、掌握Flink Job三种运行模式4、理解Flink RPC网络通信框架Akka详解5、理解TaskManager为例子,分析Flink封装Akka Actor的方法和整个调用流程6、理解Flink高可用服务HighAvailabilityServ…...
Linux 压缩解压(归档管理):tar命令
计算机中的数据经常需要备份,tar是Unix/Linux中最常用的备份工具,此命令可以把一系列文件归档到一个大文件中,也可以把档案文件解开以恢复数据。 tar使用格式 tar [参数] 打包文件名 文件 tar命令很特殊,其参数前面可以使用“-”&…...
spring boot集成mqtt协议发送和订阅数据
maven的pom.xml引入包 <!--mqtt--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-integration</artifactId><version>2.3.6.RELEASE</version></dependency><dependency…...
【数据库】详解数据库架构优化思路(两主架构、主从复制、冷热分离)
文章目录 1、为什么对数据库做优化2、双主架构双主架构的工作方式如下:双主架构的优势包括:但是一般不用这种架构,原因是: 3、主从复制主从复制的工作方式如下:主从复制的优势包括:主从复制的缺点 4、冷热分…...
el-table 实现动态表头 静态内容 根据数据显示动态输入框
直接放代码了 <el-table:data"form.tableDataA"borderstripestyle"width: 100%; margin-top: 20px"><el-table-columnv-for"(category, categoryIndex) in form.tableDataA":key"categoryIndex":label"category.name&qu…...
Reids 的整合 Spring Data Redis使用
大家好 , 我是苏麟 , 今天带来强大的Redis . REmote DIctionary Server(Redis) 是一个由 Salvatore Sanfilippo 写的 key-value 存储系统,是跨平台的非关系型数据库。 Redis 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式、可选…...
3D数据转换工具HOOPS Exchange概览
HOOPS Exchange SDK是一组C软件库,使开发团队能够快速为其应用程序添加可靠的2D和3D CAD导入和导出功能。这允许访问广泛的数据,包括边界表示(BREP)、产品制造信息(PMI)、模型树、视图、持久ID、样式、构造…...
【从零开始的rust web开发之路 一】axum学习使用
系列文章目录 第一章 axum学习使用 文章目录 系列文章目录前言老规矩先看官方文档介绍高级功能兼容性 二、hello world三、路由四,handler和提取器五,响应 前言 本职java开发,兼架构设计。空闲时间学习了rust,目前还不熟练掌握。…...
oracle警告日志\跟踪日志磁盘空间清理
oracle警告日志\跟踪日志磁盘空间清理 问题现象: 通过查看排查到alert和tarce占用大量磁盘空间 警告日志 /u01/app/oracle/diag/rdbms/orcl/orcl/alert 跟踪日志 /u01/app/oracle/diag/rdbms/orcl/orcl/trace 解决方案: 用adrci清除日志 确定目…...
【vue】el-table 数据更新后,刷新表格数据
表格里面的数据更新后,可以通过以下方法来刷新表格 方法1 用更新后的数据,覆盖之前的数据 var newTableData[];for(var i0;i<that.tableData.length;i){ if(aIdthat.selectStationId&&bIdthat.selectDeviceId){that.tableData[i].physica…...
AVL——平衡搜索树
✅<1>主页:我的代码爱吃辣📃<2>知识讲解:数据结构——AVL树☂️<3>开发环境:Visual Studio 2022💬<4>前言:AVL树是对二叉搜索树的严格高度控制,所以AVL树的搜索效率很高…...
TCP通信流程以及一些TCP的相关概念
1.TCP和UDP区别 都为传输层协议 UDP:用户数据报协议,面向无连接,可以单播,多播,广播,面向数据报,不可靠 TCP:传输控制协议,面向连接的,可靠的,基…...
PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路
完整代码: import torch import torchvision from PIL import Image from torch import nnimage_path "../imgs/dog.png" image Image.open(image_path) print(image)# 因为png格式是四个通道,除了RGB三通道外,还有一个透明度通…...
WPF开篇
一、为什么要学习WPF 大环境不好,公司要求逐年提高,既要会后端又要会客户端WPF相对于WinForm来说用户界面效果更好,图像更加立体化也是给自己增加一项技能,谨记一句话,技多不压身;多一份技能就多一份竞争力…...
linux 压缩解压缩
压缩解压缩 linux中压缩和解压文件也是很常见的 zip格式 zip格式的压缩包在windows很常见,linux中也有zip格式的压缩包 #压缩#zip [选项] 压缩包名 文件(多个文件空格隔开)zip 1.zip 123.txt 456.txt zip -r 2.zip /home/user1 ---------------------- -r 压缩目录 …...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
