当前位置: 首页 > news >正文

回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)效果一览基本…...

【前端从0开始】JavaSript——循环控制语句

循环控制语句 while语句 While 循环会在指定条件为真时循环执行代码块。 While循环,先进行条件判断,再执行循环体的代码 while (条件表达式){循环体 }注意:当前循环中,如果不满足条件,一次都不会执行 var i 1; whi…...

【Elasticsearch】spring-boot-starter-data-elasticsearch的使用以及Elasticsearch集群的连接

更多有关博主写的往期Elasticsearch文章 标题地址【ElasticSearch 集群】Linux安装ElasticSearch集群(图文解说详细版)https://masiyi.blog.csdn.net/article/details/131109454基于SpringBootElasticSearch 的Java底层框架的实现https://masiyi.blog.c…...

Python学习笔记_进阶篇(四)_django知识(三)

本章内容: Django 发送邮件Django cookieDjango sessionDjango CSRF Django 发送邮件 我们常常会用到一些发送邮件的功能,比如有人提交了应聘的表单,可以向HR的邮箱发邮件,这样,HR不看网站就可以知道有人在网站上提…...

指针(初阶)

1. 指针是什么? 指针是什么? 指针理解的2个要点: 1. 指针是内存中一个最小单元的编号,也就是地址 2. 平时口语中说的指针,通常指的是指针变量,是用来存放内存地址的变量 总结:指针就是地址&…...

Flink内核源码解析--Flink中重要的工作组件和机制

Flink内核源码 1、掌握Flink应用程序抽象2、掌握Flink核心组件整体架构抽象3、掌握Flink Job三种运行模式4、理解Flink RPC网络通信框架Akka详解5、理解TaskManager为例子,分析Flink封装Akka Actor的方法和整个调用流程6、理解Flink高可用服务HighAvailabilityServ…...

Linux 压缩解压(归档管理):tar命令

计算机中的数据经常需要备份,tar是Unix/Linux中最常用的备份工具,此命令可以把一系列文件归档到一个大文件中,也可以把档案文件解开以恢复数据。 tar使用格式 tar [参数] 打包文件名 文件 tar命令很特殊,其参数前面可以使用“-”&…...

spring boot集成mqtt协议发送和订阅数据

maven的pom.xml引入包 <!--mqtt--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-integration</artifactId><version>2.3.6.RELEASE</version></dependency><dependency…...

【数据库】详解数据库架构优化思路(两主架构、主从复制、冷热分离)

文章目录 1、为什么对数据库做优化2、双主架构双主架构的工作方式如下&#xff1a;双主架构的优势包括&#xff1a;但是一般不用这种架构&#xff0c;原因是&#xff1a; 3、主从复制主从复制的工作方式如下&#xff1a;主从复制的优势包括&#xff1a;主从复制的缺点 4、冷热分…...

el-table 实现动态表头 静态内容 根据数据显示动态输入框

直接放代码了 <el-table:data"form.tableDataA"borderstripestyle"width: 100%; margin-top: 20px"><el-table-columnv-for"(category, categoryIndex) in form.tableDataA":key"categoryIndex":label"category.name&qu…...

Reids 的整合 Spring Data Redis使用

大家好 , 我是苏麟 , 今天带来强大的Redis . REmote DIctionary Server(Redis) 是一个由 Salvatore Sanfilippo 写的 key-value 存储系统&#xff0c;是跨平台的非关系型数据库。 Redis 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式、可选…...

3D数据转换工具HOOPS Exchange概览

HOOPS Exchange SDK是一组C软件库&#xff0c;使开发团队能够快速为其应用程序添加可靠的2D和3D CAD导入和导出功能。这允许访问广泛的数据&#xff0c;包括边界表示&#xff08;BREP&#xff09;、产品制造信息&#xff08;PMI&#xff09;、模型树、视图、持久ID、样式、构造…...

【从零开始的rust web开发之路 一】axum学习使用

系列文章目录 第一章 axum学习使用 文章目录 系列文章目录前言老规矩先看官方文档介绍高级功能兼容性 二、hello world三、路由四&#xff0c;handler和提取器五&#xff0c;响应 前言 本职java开发&#xff0c;兼架构设计。空闲时间学习了rust&#xff0c;目前还不熟练掌握。…...

oracle警告日志\跟踪日志磁盘空间清理

oracle警告日志\跟踪日志磁盘空间清理 问题现象&#xff1a; 通过查看排查到alert和tarce占用大量磁盘空间 警告日志 /u01/app/oracle/diag/rdbms/orcl/orcl/alert 跟踪日志 /u01/app/oracle/diag/rdbms/orcl/orcl/trace 解决方案&#xff1a; 用adrci清除日志 确定目…...

【vue】el-table 数据更新后,刷新表格数据

表格里面的数据更新后&#xff0c;可以通过以下方法来刷新表格 方法1 用更新后的数据&#xff0c;覆盖之前的数据 var newTableData[];for(var i0;i<that.tableData.length;i){ if(aIdthat.selectStationId&&bIdthat.selectDeviceId){that.tableData[i].physica…...

AVL——平衡搜索树

✅<1>主页&#xff1a;我的代码爱吃辣&#x1f4c3;<2>知识讲解&#xff1a;数据结构——AVL树☂️<3>开发环境&#xff1a;Visual Studio 2022&#x1f4ac;<4>前言&#xff1a;AVL树是对二叉搜索树的严格高度控制&#xff0c;所以AVL树的搜索效率很高…...

TCP通信流程以及一些TCP的相关概念

1.TCP和UDP区别 都为传输层协议 UDP&#xff1a;用户数据报协议&#xff0c;面向无连接&#xff0c;可以单播&#xff0c;多播&#xff0c;广播&#xff0c;面向数据报&#xff0c;不可靠 TCP&#xff1a;传输控制协议&#xff0c;面向连接的&#xff0c;可靠的&#xff0c;基…...

PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路

完整代码&#xff1a; import torch import torchvision from PIL import Image from torch import nnimage_path "../imgs/dog.png" image Image.open(image_path) print(image)# 因为png格式是四个通道&#xff0c;除了RGB三通道外&#xff0c;还有一个透明度通…...

WPF开篇

一、为什么要学习WPF 大环境不好&#xff0c;公司要求逐年提高&#xff0c;既要会后端又要会客户端WPF相对于WinForm来说用户界面效果更好&#xff0c;图像更加立体化也是给自己增加一项技能&#xff0c;谨记一句话&#xff0c;技多不压身&#xff1b;多一份技能就多一份竞争力…...

linux 压缩解压缩

压缩解压缩 linux中压缩和解压文件也是很常见的 zip格式 zip格式的压缩包在windows很常见&#xff0c;linux中也有zip格式的压缩包 #压缩#zip [选项] 压缩包名 文件(多个文件空格隔开)zip 1.zip 123.txt 456.txt zip -r 2.zip /home/user1 ---------------------- -r 压缩目录 …...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...