当前位置: 首页 > news >正文

pytorch 实现VGG

      VGG全称是Visual Geometry Group,因为是由Oxford的Visual Geometry Group提出的。AlexNet问世之后,很多学者通过改进AlexNet的网络结构来提高自己的准确率,主要有两个方向:小卷积核和多尺度。而VGG的作者们则选择了另外一个方向,即加深网络深度。
      卷积网络的输入是224 * 224RGB图像,整个网络的组成是非常格式化的,基本上都用的是3 * 3的卷积核以及 2 * 2max pooling,少部分网络加入了1 * 1的卷积核。因为想要体现出“上下左右中”的概念,3*3的卷积核已经是最小的尺寸了。

import torch
import torch.nn as nn# 定义VGG模型
class VGG(nn.Module):def __init__(self, num_classes=1000):super(VGG, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(64, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(64, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(128, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(128, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(256, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2))self.avgpool = nn.AdaptiveAvgPool2d((7, 7))self.classifier = nn.Sequential(nn.Linear(7 * 7 * 512, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, num_classes))def forward(self, x):x = self.features(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return x# 创建VGG模型实例
model = VGG()

 

相关文章:

pytorch 实现VGG

VGG全称是Visual Geometry Group,因为是由Oxford的Visual Geometry Group提出的。AlexNet问世之后,很多学者通过改进AlexNet的网络结构来提高自己的准确率,主要有两个方向:小卷积核和多尺度。而VGG的作者们则选择了另外一个方向&a…...

科技项目验收检测报告获取有哪些注意事项,作用都有哪些?

验收测试报告 软件从研发到结束是一个很长的周期,对于软件想要完成上市或者是交付到用户手中之前我们还需要进行一次全面检测,也就是科技项目验收测试,此测试有着严格的要求,需要第三方软件测评机构来完成,并出具科技…...

OceanBase:谁动了我得参数?

作者:郑增权 爱可生南区数据库工程师,爱可生 DBA 团队成员,负责数据库相关技术支持。爱好:桌球、羽毛球、咖啡、电影。 本文来源:原创投稿 爱可生开源社区出品,原创内容未经授权不得随意使用,转…...

Python快速入门体验

Python快速入门体验 一、环境信息1.1 硬件信息1.2 软件信息 二、Conda安装2.1 Conda介绍2.1.1 Conda简介2.1.2 Conda、Anaconda及Miniconda及的关系 2.2 Conda安装包下载2.2.1 Miniconda下载2.2.2 Anconda下载 2.3 Conda安装2.3.1 Miniconda安装2.3.2 Anconda安装 2.4 Conda初始…...

【从零学习python 】68. Python正则表达式中的贪婪和非贪婪模式

文章目录 贪婪和非贪婪模式进阶案例 贪婪和非贪婪模式 Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符; 非贪婪则相反,总是尝试匹配尽可能少的字符。 在*、?、、{m,n}后面…...

MongoDB【CRUD练习-条件查询-文档关系】

练习1-CRUD // 进入test数据库 use test; // 查询文档内容 db.students.find(); // 显示当前数据库中所有集合 show collections; // 向数据库的user集合中插入一个文档 db.users.insertOne({username: "lyh"} ); // 查看当前数据库中所有的集合 发现users集合被创建…...

使用M2Mqtt 接受以及发布MQTT消息

在NuGet库里面直接查找M2Mqtt就可以安装库。 使用framework4.5.2 1.配置文件操作 public static class GModel{public static BassSetup MainSetup { get; set; }public static void GetThisAdd(){MainSetup new BassSetup();string IPAdd ConfigurationManager.AppSettings…...

【SA8295P 源码分析】33 - Android GVM USB 透传配置

【SA8295P 源码分析】33 - Android GVM USB 透传配置 1. QNX 侧配置 USB1 为 GVM 使用2. Android 端配置 dts:以配置 USB1 为例3. QNX 端配置 linux-la.config:以配置 USB1 为例4. 在Android shell 中配置USB0 / USB1 的 Host/device 模式切换系列文章汇总见:《【SA8295P 源…...

华为OD机试 - 过滤组合字符串 - 深度优先搜索dfs算法(Java 2023 B卷 100分)

目录 专栏导读一、题目描述二、输入描述三、输出描述四、解题思路五、Java算法源码六、效果展示1、输入2、输出3、说明 华为OD机试 2023B卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(A卷B卷&#…...

【Unity自制手册】游戏基础API大全

👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:Uni…...

【LVS】4、HAProxy搭建web集群

目前常见的Web集群调度器分为软件和硬件 软件通常使用开源的LVS、Haproxy、Nginx LVS性能最好(基于内核转发),但是搭建相对复杂;Nginx的upstream模块支持群集功能,但是对群集节点健康检查功能不强,高并发性…...

【应用层】网络基础 -- HTTP协议

再谈协议HTTP协议认识URLurlencode和urldecodeHTTP协议格式HTTP的方法HTTP的状态码HTTP常见HeaderHTTP周边会话保持 再谈协议 协议是一种 “约定”. socket api的接口,在读写数据时,都是按 “字符串” 的方式来发送接收的(tcp是以字节流的方式发送的&am…...

【线性DP】模型总结(terse版)

【线性DP】模型总结 最长上升子序列 DP法 ​ dp[i]表示以i结尾的最长上升子序列的长度。 ​ 对于每个i&#xff0c;遍历j1~i-1,若a[j] < a[i], 则dp[i] max(dp[i], dp[j] 1); 二分法 ​ 可以优化时间复杂度。 ​ dp[]数组用来存储当前最长上升子序列。 ​ 若dp[]数…...

conda 常用命令

conda 常用命令 一、创建环境二、删除环境三、环境重命名四 、查看环境列表五、进入某个虚拟环境六、退出当前环境七、查看当前虚拟环境下的所有安装包八、安装或卸载包(进入虚拟环境之后&#xff09;九、分享虚拟环境十、源服务器管理十一、升级十二、卸载十三、卸载十四、pip…...

前端面试:【异步编程】Callback、Promise和Async/Await

嗨&#xff0c;亲爱的JavaScript探险家&#xff01;在JavaScript开发的旅程中&#xff0c;你会经常遇到异步编程的需求。为了处理异步操作&#xff0c;JavaScript提供了多种机制&#xff0c;包括Callbacks、Promises和Async/Await。本文将深入介绍这些机制&#xff0c;让你能够…...

大数据(四):Pandas的基础应用详解

专栏介绍 结合自身经验和内部资料总结的Python教程&#xff0c;每天3-5章&#xff0c;最短1个月就能全方位的完成Python的学习并进行实战开发&#xff0c;学完了定能成为大佬&#xff01;加油吧&#xff01;卷起来&#xff01; 全部文章请访问专栏&#xff1a;《Python全栈教…...

计算机网络第3章(数据链路层)

计算机网络第3章&#xff08;数据链路层&#xff09; 3.1 数据链路层概述3.1.1 概述3.1.2 数据链路层使用的信道3.1.3 三个重要问题 3.2 封装成帧3.2.1 介绍3.2.2 透明传输3.2.3 总结 3.3 差错检测3.3.1 介绍3.3.2 奇偶校验3.3.3 循环冗余校验CRC(Cyclic Redundancy Check)3.3.…...

stm32之4.时钟体系

3.时钟体系(给单片机提供一个非常稳定的频率信号) ①可以使用三种不同的时钟源来驱动系统时钟&#xff08;SYSCLK&#xff09;&#xff0c;CPU运行的频率为168MHZ&#xff1b; HSI(RC振荡器时钟&#xff0c;也就是高速内部时钟&#xff0c;一般来说很少用&#xff0c;因为精度…...

RPC和HTTP协议

RPC 全称&#xff08;Remote Procedure Call&#xff09;&#xff0c;它是一种针对跨进程或者跨网络节点的应用之间的远程过程调用协议。 它的核心目标是&#xff0c;让开发人员在进行远程方法调用的时候&#xff0c;就像调用本地方法一样&#xff0c;不需要额外为了完成这个交…...

BUGFix:onnx -> TensorRT转换过程失败

先附上相关的onnx2trt的部分代码&#xff1a; def onnx2trt(onnx_path):logger trt.Logger(trt.Logger.ERROR)builder trt.Builder(logger)network builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))parser trt.OnnxParser(netw…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...