pytorch 实现VGG
VGG全称是Visual Geometry Group,因为是由Oxford的Visual Geometry Group提出的。AlexNet问世之后,很多学者通过改进AlexNet的网络结构来提高自己的准确率,主要有两个方向:小卷积核和多尺度。而VGG的作者们则选择了另外一个方向,即加深网络深度。
卷积网络的输入是224 * 224的RGB图像,整个网络的组成是非常格式化的,基本上都用的是3 * 3的卷积核以及 2 * 2的max pooling,少部分网络加入了1 * 1的卷积核。因为想要体现出“上下左右中”的概念,3*3的卷积核已经是最小的尺寸了。

import torch
import torch.nn as nn# 定义VGG模型
class VGG(nn.Module):def __init__(self, num_classes=1000):super(VGG, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(64, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(64, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(128, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(128, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(256, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2))self.avgpool = nn.AdaptiveAvgPool2d((7, 7))self.classifier = nn.Sequential(nn.Linear(7 * 7 * 512, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, num_classes))def forward(self, x):x = self.features(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return x# 创建VGG模型实例
model = VGG()
相关文章:
pytorch 实现VGG
VGG全称是Visual Geometry Group,因为是由Oxford的Visual Geometry Group提出的。AlexNet问世之后,很多学者通过改进AlexNet的网络结构来提高自己的准确率,主要有两个方向:小卷积核和多尺度。而VGG的作者们则选择了另外一个方向&a…...
科技项目验收检测报告获取有哪些注意事项,作用都有哪些?
验收测试报告 软件从研发到结束是一个很长的周期,对于软件想要完成上市或者是交付到用户手中之前我们还需要进行一次全面检测,也就是科技项目验收测试,此测试有着严格的要求,需要第三方软件测评机构来完成,并出具科技…...
OceanBase:谁动了我得参数?
作者:郑增权 爱可生南区数据库工程师,爱可生 DBA 团队成员,负责数据库相关技术支持。爱好:桌球、羽毛球、咖啡、电影。 本文来源:原创投稿 爱可生开源社区出品,原创内容未经授权不得随意使用,转…...
Python快速入门体验
Python快速入门体验 一、环境信息1.1 硬件信息1.2 软件信息 二、Conda安装2.1 Conda介绍2.1.1 Conda简介2.1.2 Conda、Anaconda及Miniconda及的关系 2.2 Conda安装包下载2.2.1 Miniconda下载2.2.2 Anconda下载 2.3 Conda安装2.3.1 Miniconda安装2.3.2 Anconda安装 2.4 Conda初始…...
【从零学习python 】68. Python正则表达式中的贪婪和非贪婪模式
文章目录 贪婪和非贪婪模式进阶案例 贪婪和非贪婪模式 Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符; 非贪婪则相反,总是尝试匹配尽可能少的字符。 在*、?、、{m,n}后面…...
MongoDB【CRUD练习-条件查询-文档关系】
练习1-CRUD // 进入test数据库 use test; // 查询文档内容 db.students.find(); // 显示当前数据库中所有集合 show collections; // 向数据库的user集合中插入一个文档 db.users.insertOne({username: "lyh"} ); // 查看当前数据库中所有的集合 发现users集合被创建…...
使用M2Mqtt 接受以及发布MQTT消息
在NuGet库里面直接查找M2Mqtt就可以安装库。 使用framework4.5.2 1.配置文件操作 public static class GModel{public static BassSetup MainSetup { get; set; }public static void GetThisAdd(){MainSetup new BassSetup();string IPAdd ConfigurationManager.AppSettings…...
【SA8295P 源码分析】33 - Android GVM USB 透传配置
【SA8295P 源码分析】33 - Android GVM USB 透传配置 1. QNX 侧配置 USB1 为 GVM 使用2. Android 端配置 dts:以配置 USB1 为例3. QNX 端配置 linux-la.config:以配置 USB1 为例4. 在Android shell 中配置USB0 / USB1 的 Host/device 模式切换系列文章汇总见:《【SA8295P 源…...
华为OD机试 - 过滤组合字符串 - 深度优先搜索dfs算法(Java 2023 B卷 100分)
目录 专栏导读一、题目描述二、输入描述三、输出描述四、解题思路五、Java算法源码六、效果展示1、输入2、输出3、说明 华为OD机试 2023B卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(A卷B卷&#…...
【Unity自制手册】游戏基础API大全
👨💻个人主页:元宇宙-秩沅 👨💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨💻 本文由 秩沅 原创 👨💻 收录于专栏:Uni…...
【LVS】4、HAProxy搭建web集群
目前常见的Web集群调度器分为软件和硬件 软件通常使用开源的LVS、Haproxy、Nginx LVS性能最好(基于内核转发),但是搭建相对复杂;Nginx的upstream模块支持群集功能,但是对群集节点健康检查功能不强,高并发性…...
【应用层】网络基础 -- HTTP协议
再谈协议HTTP协议认识URLurlencode和urldecodeHTTP协议格式HTTP的方法HTTP的状态码HTTP常见HeaderHTTP周边会话保持 再谈协议 协议是一种 “约定”. socket api的接口,在读写数据时,都是按 “字符串” 的方式来发送接收的(tcp是以字节流的方式发送的&am…...
【线性DP】模型总结(terse版)
【线性DP】模型总结 最长上升子序列 DP法 dp[i]表示以i结尾的最长上升子序列的长度。 对于每个i,遍历j1~i-1,若a[j] < a[i], 则dp[i] max(dp[i], dp[j] 1); 二分法 可以优化时间复杂度。 dp[]数组用来存储当前最长上升子序列。 若dp[]数…...
conda 常用命令
conda 常用命令 一、创建环境二、删除环境三、环境重命名四 、查看环境列表五、进入某个虚拟环境六、退出当前环境七、查看当前虚拟环境下的所有安装包八、安装或卸载包(进入虚拟环境之后)九、分享虚拟环境十、源服务器管理十一、升级十二、卸载十三、卸载十四、pip…...
前端面试:【异步编程】Callback、Promise和Async/Await
嗨,亲爱的JavaScript探险家!在JavaScript开发的旅程中,你会经常遇到异步编程的需求。为了处理异步操作,JavaScript提供了多种机制,包括Callbacks、Promises和Async/Await。本文将深入介绍这些机制,让你能够…...
大数据(四):Pandas的基础应用详解
专栏介绍 结合自身经验和内部资料总结的Python教程,每天3-5章,最短1个月就能全方位的完成Python的学习并进行实战开发,学完了定能成为大佬!加油吧!卷起来! 全部文章请访问专栏:《Python全栈教…...
计算机网络第3章(数据链路层)
计算机网络第3章(数据链路层) 3.1 数据链路层概述3.1.1 概述3.1.2 数据链路层使用的信道3.1.3 三个重要问题 3.2 封装成帧3.2.1 介绍3.2.2 透明传输3.2.3 总结 3.3 差错检测3.3.1 介绍3.3.2 奇偶校验3.3.3 循环冗余校验CRC(Cyclic Redundancy Check)3.3.…...
stm32之4.时钟体系
3.时钟体系(给单片机提供一个非常稳定的频率信号) ①可以使用三种不同的时钟源来驱动系统时钟(SYSCLK),CPU运行的频率为168MHZ; HSI(RC振荡器时钟,也就是高速内部时钟,一般来说很少用,因为精度…...
RPC和HTTP协议
RPC 全称(Remote Procedure Call),它是一种针对跨进程或者跨网络节点的应用之间的远程过程调用协议。 它的核心目标是,让开发人员在进行远程方法调用的时候,就像调用本地方法一样,不需要额外为了完成这个交…...
BUGFix:onnx -> TensorRT转换过程失败
先附上相关的onnx2trt的部分代码: def onnx2trt(onnx_path):logger trt.Logger(trt.Logger.ERROR)builder trt.Builder(logger)network builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))parser trt.OnnxParser(netw…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能
1. 开发环境准备 安装DevEco Studio 3.1: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK 项目配置: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...
