使用批处理文件(.bat)启动多个CMD窗口并执行命令
由于每次启动本机的mongodb和kafka,都需要进入相关目录进行启动,操作相对繁琐,于是想起了批处理来帮忙一键启动。
在桌面新建一个txt文件,改后缀名为.bat,并加上下面的代码。
cd /d D:\env-java\mongodb-win32-x86_64-windows-5.0.5\bin
start cmd /k mongod -f ../conf/mongod.conf --auth
choice /t 3 /d y
cd /d D:\env-java\kafka_2.13-3.5.1
start cmd /k bin\windows\zookeeper-server-start.bat config\zookeeper.properties
choice /t 3 /d y
start cmd /k bin\windows\kafka-server-start.bat config\server.properties
运行流程:
- 点击bat文件后先执行第一个语句进入到相应的目录。
- 执行第二个命令:新打开一个cmd窗口,执行
mongod -f ../conf/mongod.conf --auth。 - 执行第三个命令:等待3秒。
- 以此类推…
代码结尾不加pause的原因是:执行.bat程序会打开一个窗口,执行完.bat程序后关闭当前窗口,因为不需要该窗口保留着,免得手动关闭。
- start 用来启动一个应用。
- cmd /k 表示启动一个CMD且不关闭cmd。
- start cmd /k “命令1 & 命令2 & 命令3” (无论前面命令是否成功, 后面都会执行)。
- start cmd /k "命令1 && 命令2 && 命令3 " (仅当前面命令成功时, 才执行后面,一般用这个)。
- start cmd /k “命令1 || 命令2 || 命令3” (仅当前面命令失败时. 才执行后面)。
- start cmd /c 启动一个CMD且关闭cmd。
- cd /d 表示运行到该目录下。
- 使用choice命令来延时3秒,也可用ping命令作延时,ping 127.0.0.1 -n 5。
在命令窗口输入choice/? 以查看更多choice命令的用法。
启动kafka和mongod用/k的原因:
新开启一个cmd窗口运行mongod -f ../conf/mongod.conf --auth,服务启动后要一直保持开启状态,如果用/c关掉cmd窗口这样就关掉了服务。
相关文章:
使用批处理文件(.bat)启动多个CMD窗口并执行命令
由于每次启动本机的mongodb和kafka,都需要进入相关目录进行启动,操作相对繁琐,于是想起了批处理来帮忙一键启动。 在桌面新建一个txt文件,改后缀名为.bat,并加上下面的代码。 cd /d D:\env-java\mongodb-win32-x86_64…...
开源项目-会议室预约管理系统
哈喽,大家好,今天给大家带来一个开源项目-会议室管理系统。项目基于SpringBoot+VUE开发。 会议室管理系统主要分为 前台会议室预约管理系统 和 会议室后台管理系统 两部分 前台会议室预约管理系统主要有申请会议室,预约进程,查看历史会议三部分 后台管理系统主要有会议室…...
Flask路由注册route的几种方式
前言 Flask路由注册的三种方式: app.routeapp.add_url_rule蓝图 app.route(添加变量) from flask import Flaskapp Flask(__name__) app.config.from_pyfile(config/base_setting.py) app.route("/") def hello():return "…...
Elasticsearch 查询之Function Score Query
前言 ES 的主查询评分模式分为两种,是信息检索领域的重要算法: TF-IDF 算法 和 BM25 算法。 Elasticsearch 从版本 5.0 开始引入了 BM25 算法作为默认的文档评分(relevance scoring)算法。在此之前,Elasticsearch 使…...
【3D激光SLAM】LOAM源代码解析--scanRegistration.cpp
系列文章目录 【3D激光SLAM】LOAM源代码解析–scanRegistration.cpp 【3D激光SLAM】LOAM源代码解析–laserOdometry.cpp 【3D激光SLAM】LOAM源代码解析–laserMapping.cpp 【3D激光SLAM】LOAM源代码解析–transformMaintenance.cpp 写在前面 本系列文章将对LOAM源代码进行讲解…...
解锁ChatGLM-6B的潜力:优化大语言模型训练,突破任务困难与答案解析难题
解锁ChatGLM-6B的潜力:优化大语言模型训练,突破任务困难与答案解析难题 LLM(Large Language Model)通常拥有大量的先验知识,使得其在许多自然语言处理任务上都有着不错的性能。 但,想要直接利用 LLM 完成…...
Apipost:提升API开发效率的利器
在数字化时代,API已经成为企业和开发者实现业务互通的关键工具。然而,API的开发、调试、文档编写以及测试等工作繁琐且复杂。Apipost为这一问题提供了完美的解决方案。 Apipost是一款专为API开发人员设计的协同研发平台,旨在简化API的生命周…...
论文解读:Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions
发布时间:2022.4.4 (2021发布,进过多次修订) 论文地址:https://arxiv.org/pdf/2112.08088.pdf 项目地址:https://github.com/wenyyu/Image-Adaptive-YOLO 虽然基于深度学习的目标检测方法在传统数据集上取得了很好的结果…...
springboot 基于JAVA的动漫周边商城的设计与实现64n21
动漫周边商城分为二个模块,分别是管理员功能模块和用户功能模块。管理员功能模块包括:文章资讯、文章类型、动漫活动、动漫商品功能,用户功能模块包括:文章资讯、动漫活动、动漫商品、购物车,传统的管理方式对时间、地…...
uniapp - 全平台兼容实现上传图片带进度条功能,用户上传图像到服务器时显示上传进度条效果功能(一键复制源码,开箱即用)
效果图 uniapp小程序/h5网页/app实现上传图片并监听上传进度,显示进度条完整功能示例代码 一键复制,改下样式即可。 全部代码 记得改下样式,或直接...
第 7 章 排序算法(2)(冒泡排序)
7.5冒泡排序 7.5.1基本介绍 冒泡排序(Bubble Sorting)的基本思想是:通过对待排序序列从前向后(从下标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部…...
软件测试技术之可用性测试之WhatsApp Web
Tag:可行性测试、测试流程、结果分析、案例分析 WhatsApp是一款面向智能手机的网络通讯服务,它可以通过网络传送短信、图片、音频和视频。WhatsApp在全球范围内被广泛使用,是最受欢迎的即时聊天软件。 虽然,在电脑上使用WhatsAp…...
制作 Mikrotik CHR AWS AMI 镜像
文章目录 制作 Mikrotik RouterOS CHR AWS AMI 镜像前言前期准备配置 Access Key安装配置 AWS CLI创建 S3 bucket上传 Mikrotik CHR 镜像trust-policy配置role-policy 配置创建 AMI导入镜像查看导入进度导入进度查看注册镜像参考:制作 Mikrotik RouterOS CHR AWS AMI 镜像 前言…...
科技成果鉴定测试有什么意义?专业CMA、CNAS软件测评公司
科技成果鉴定测试是指通过一系列科学的实验和检测手段,对科技成果进行客观评价和鉴定的过程。通过测试,可以对科技成果的技术优劣进行评估,从而为科技创新提供参考和指导。 一、科技成果鉴定测试的意义 1、帮助客户了解科技产品的性能特点和…...
知识储备--基础算法篇-排序算法
1.知识--时间复杂度和空间复杂度 1.2时间复杂度 一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。 1.3空间复杂度 空间复杂度不是程序占用了多少bytes的空间,空间复杂度算的是变量的个…...
Qt+C++动力监控动画仿真SCADA上位机
程序示例精选 QtC动力监控动画仿真SCADA上位机 如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助! 前言 这篇博客针对<<QtC动力监控动画仿真SCADA上位机>>编写代码,代码整洁,规则…...
Flask 单元测试
如果一个软件项目没有经过测试,就像做的菜里没加盐一样。Flask 作为一个 Web 软件项目,如何做单元测试呢,今天我们来了解下,基于 unittest 的 Flask 项目的单元测试。 什么是单元测试 单元测试是软件测试的一种类型。顾名思义&a…...
前端面试:【前端工程化】CommonJS 与 ES6 模块
嗨,亲爱的前端开发者!在现代Web开发中,模块化是构建可维护和可扩展应用程序的关键。本文将深入探讨两种主要的JavaScript模块系统:CommonJS 和 ES6 模块,以帮助你了解它们的工作原理、用法以及如何选择合适的模块系统。…...
keepalived双机热备,keepalived+lvs(DR)
本节主要学习了keepalivedlvs的作用和配置方法主要配置调度器和web节点,还有keepalived的双击热备,主要内容有概述,安装,功能模块,配置双击热备,验证方法,双击热备的脑裂现象和VIP无法通信。 目…...
unity-ShaderGraph全节点
1.Artistic美术 Adjustment调整 Channel Mixer 混合颜色通道 Contrast 设置对比度 Hue 设置色调 range需要选normalized Invert Colors 反转颜色 Replace Color 设置两个颜色通道互换,可调参数 Saturation 设置饱和度 White Balance 白平衡(调冷暖色调&a…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
