当前位置: 首页 > news >正文

【Axure视频教程】标签版多选下拉列表

今天教大家在Axure里如何制作标签版多选下拉列表的原型模板,该模板用中继器制作,制作完成后使用也方便,只需要在中继器表格里维护选项信息,即可自动生成交互效果,包括显示隐藏选项列表,选中和取消选中选项,自动生成对应标签,自动调整元件尺寸和位置,滚动查看更多等,具体效果可以参考下方视频。该教程从0开始制作,手把手教学,无论是新手小白还是有一定基础的同学,都可以学习的哦。

【视频教程——试看版】

【Axure教程】标签版多选下拉列表

【完整版视频教程】

【Axure视频教程】标签版多选下拉列表

相关文章:

【Axure视频教程】标签版多选下拉列表

今天教大家在Axure里如何制作标签版多选下拉列表的原型模板,该模板用中继器制作,制作完成后使用也方便,只需要在中继器表格里维护选项信息,即可自动生成交互效果,包括显示隐藏选项列表,选中和取消选中选项&…...

Sharepoint2013必备软件安装路径

SP2013是最后一个有foundation版本的,后续各个版本都是server版,要买lisence。免费的可以用,但安装组件有些链接已经失效了,自己手动下载的路径备份一下,已经下载好的完整版,在文章最后可以直接下载&#x…...

C++day4(关系运算符的重载)

关系运算符重载的作用&#xff1a;可以让两个自定义类型对象进行对比操作。 代码实现关系运算符的重载&#xff1a; #include <iostream>using namespace std;class Person {// friend const Person operator(const Person &L, const Person &R); private:int …...

农业水价综合改革系统主要组成

一、系统概述 农业水价改革灌区信息化系统主要由感知采集层、网络传输层、系统应用层等部分组成。通过无线技术、感知层技术与新型应用的有效结合&#xff0c;可以用于各种业务的传送&#xff0c;充分满足灌区监测站间的物与物互联&#xff0c;农业生产的自动化和信息化相结合。…...

使用批处理文件(.bat)启动多个CMD窗口并执行命令

由于每次启动本机的mongodb和kafka&#xff0c;都需要进入相关目录进行启动&#xff0c;操作相对繁琐&#xff0c;于是想起了批处理来帮忙一键启动。 在桌面新建一个txt文件&#xff0c;改后缀名为.bat&#xff0c;并加上下面的代码。 cd /d D:\env-java\mongodb-win32-x86_64…...

开源项目-会议室预约管理系统

哈喽,大家好,今天给大家带来一个开源项目-会议室管理系统。项目基于SpringBoot+VUE开发。 会议室管理系统主要分为 前台会议室预约管理系统 和 会议室后台管理系统 两部分 前台会议室预约管理系统主要有申请会议室,预约进程,查看历史会议三部分 后台管理系统主要有会议室…...

Flask路由注册route的几种方式

前言 Flask路由注册的三种方式&#xff1a; app.routeapp.add_url_rule蓝图 app.route&#xff08;添加变量&#xff09; from flask import Flaskapp Flask(__name__) app.config.from_pyfile(config/base_setting.py) app.route("/") def hello():return "…...

Elasticsearch 查询之Function Score Query

前言 ES 的主查询评分模式分为两种&#xff0c;是信息检索领域的重要算法&#xff1a; TF-IDF 算法 和 BM25 算法。 Elasticsearch 从版本 5.0 开始引入了 BM25 算法作为默认的文档评分&#xff08;relevance scoring&#xff09;算法。在此之前&#xff0c;Elasticsearch 使…...

【3D激光SLAM】LOAM源代码解析--scanRegistration.cpp

系列文章目录 【3D激光SLAM】LOAM源代码解析–scanRegistration.cpp 【3D激光SLAM】LOAM源代码解析–laserOdometry.cpp 【3D激光SLAM】LOAM源代码解析–laserMapping.cpp 【3D激光SLAM】LOAM源代码解析–transformMaintenance.cpp 写在前面 本系列文章将对LOAM源代码进行讲解…...

解锁ChatGLM-6B的潜力:优化大语言模型训练,突破任务困难与答案解析难题

解锁ChatGLM-6B的潜力&#xff1a;优化大语言模型训练&#xff0c;突破任务困难与答案解析难题 LLM&#xff08;Large Language Model&#xff09;通常拥有大量的先验知识&#xff0c;使得其在许多自然语言处理任务上都有着不错的性能。 但&#xff0c;想要直接利用 LLM 完成…...

Apipost:提升API开发效率的利器

在数字化时代&#xff0c;API已经成为企业和开发者实现业务互通的关键工具。然而&#xff0c;API的开发、调试、文档编写以及测试等工作繁琐且复杂。Apipost为这一问题提供了完美的解决方案。 Apipost是一款专为API开发人员设计的协同研发平台&#xff0c;旨在简化API的生命周…...

论文解读:Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

发布时间&#xff1a;2022.4.4 (2021发布&#xff0c;进过多次修订) 论文地址&#xff1a;https://arxiv.org/pdf/2112.08088.pdf 项目地址&#xff1a;https://github.com/wenyyu/Image-Adaptive-YOLO 虽然基于深度学习的目标检测方法在传统数据集上取得了很好的结果&#xf…...

springboot 基于JAVA的动漫周边商城的设计与实现64n21

动漫周边商城分为二个模块&#xff0c;分别是管理员功能模块和用户功能模块。管理员功能模块包括&#xff1a;文章资讯、文章类型、动漫活动、动漫商品功能&#xff0c;用户功能模块包括&#xff1a;文章资讯、动漫活动、动漫商品、购物车&#xff0c;传统的管理方式对时间、地…...

uniapp - 全平台兼容实现上传图片带进度条功能,用户上传图像到服务器时显示上传进度条效果功能(一键复制源码,开箱即用)

效果图 uniapp小程序/h5网页/app实现上传图片并监听上传进度,显示进度条完整功能示例代码 一键复制,改下样式即可。 全部代码 记得改下样式,或直接...

第 7 章 排序算法(2)(冒泡排序)

7.5冒泡排序 7.5.1基本介绍 冒泡排序&#xff08;Bubble Sorting&#xff09;的基本思想是&#xff1a;通过对待排序序列从前向后&#xff08;从下标较小的元素开始&#xff09;,依次比较相邻元素的值&#xff0c;若发现逆序则交换&#xff0c;使值较大的元素逐渐从前移向后部…...

软件测试技术之可用性测试之WhatsApp Web

Tag&#xff1a;可行性测试、测试流程、结果分析、案例分析 WhatsApp是一款面向智能手机的网络通讯服务&#xff0c;它可以通过网络传送短信、图片、音频和视频。WhatsApp在全球范围内被广泛使用&#xff0c;是最受欢迎的即时聊天软件。 虽然&#xff0c;在电脑上使用WhatsAp…...

制作 Mikrotik CHR AWS AMI 镜像

文章目录 制作 Mikrotik RouterOS CHR AWS AMI 镜像前言前期准备配置 Access Key安装配置 AWS CLI创建 S3 bucket上传 Mikrotik CHR 镜像trust-policy配置role-policy 配置创建 AMI导入镜像查看导入进度导入进度查看注册镜像参考:制作 Mikrotik RouterOS CHR AWS AMI 镜像 前言…...

科技成果鉴定测试有什么意义?专业CMA、CNAS软件测评公司

科技成果鉴定测试是指通过一系列科学的实验和检测手段&#xff0c;对科技成果进行客观评价和鉴定的过程。通过测试&#xff0c;可以对科技成果的技术优劣进行评估&#xff0c;从而为科技创新提供参考和指导。 一、科技成果鉴定测试的意义 1、帮助客户了解科技产品的性能特点和…...

知识储备--基础算法篇-排序算法

1.知识--时间复杂度和空间复杂度 1.2时间复杂度 一个算法所花费的时间与其中语句的执行次数成正比例&#xff0c;算法中的基本操作的执行次数&#xff0c;为算法的时间复杂度。 1.3空间复杂度 空间复杂度不是程序占用了多少bytes的空间&#xff0c;空间复杂度算的是变量的个…...

Qt+C++动力监控动画仿真SCADA上位机

程序示例精选 QtC动力监控动画仿真SCADA上位机 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对<<QtC动力监控动画仿真SCADA上位机>>编写代码&#xff0c;代码整洁&#xff0c;规则…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...