阿里云机器学习PAI全新推出特征平台 (Feature Store),助力AI建模场景特征数据高效利用
推荐算法与系统在全球范围内已得到广泛应用,为用户提供了更个性化和智能化的产品推荐体验。在推荐系统领域,AI建模中特征数据的复用、一致性等问题严重影响了建模效率。阿里云机器学习平台 PAI 推出特征平台(PAI-FeatureStore) 。在所有需要特征的AI建模场景,用户可通过 Feature Store 轻松地共享和重用特征数据,减少资源和时间成本、提升工作效率。
什么是特征平台
特征平台(Feature Store) 是一种中心化的数据管理和共享平台,用于组织、存储和管理机器学习和数据科学中使用的特征数据。在多个细分场景解决AI模型的训练和推理输入特征数据问题。
阿里云机器学习平台 PAI-FeatureStore 与阿里云多个云产品的深度结合,封装从特征到模型的全链路。并且,基于推荐算法流程的开发,实现与已有的成熟推荐流程无缝衔接,进一步提升算法工程师和开发人员的效率。
通过 PAI-FeatureStore,有效地提升工作效率、减少资源成本和开发时间。作为一个集中的、可扩展的、高效的特征数据存储和访问解决方案,解决了在AI建模中特征数据的复用、一致性、可发现性和可管理性等问题。PAI-FeatureStore 自动完成在线和离线表的构建,保证在线和离线的一致性,同时在特征表只存一份的情况下,能够向多人共享特征;离线存储方面支持阿里云云原生大数据计算服务MaxCompute,在线存储方面支持阿里云实时数仓Hologres、GraphCompute 和 TableStore 等产品,算法工程师无需深入了解各个存储产品的使用细节,通过网页手动操作或 Python SDK 即可完成特征处理。



PAI-FeatureStore 适用场景及优势功能
阿里云机器学习平台 PAI-FeatureStore 适用于推荐场景、用户增长、广告或者是金融风控场景等需要特征的AI建模场景,为数据分析师和建模人员提供统一的数据特征存储和管理平台,方便进行数据处理、特征提取和分析。
目前 PAI-FeatureStore 主要功能如下:
- 离线数据和在线数据一致:PAI-FeatureStore 中,各个产品的数据同步操作都封装为一行数据同步的代码,帮忙用户屏蔽了不同存储产品繁琐的数据授权等操作细节,保证数据一致性,提高特征数据处理和使用的准确率和效率;
- 自动关联特征表:PAI-FeatureStore 中,支持将模型训练所需要的各种特征组合在一起,导出成模型训练所需要的训练表。当训练所需的特征散落在多张不同的表里时,PAI-FeatureStore支持自动将多张表关联导出。并且,支持序列表导出、按event_time关联导出、自动按表大小排序及优化导出时间等;
- 自动模型特征分析:PAI-FeatureStore 支持PAI-EAS自动分析出模型需要使用的特征,并且自动加载好相关特征。通过指定好PAI-FeatureStore 中的项目名、模型特征名等,预测引擎能自动分析出所需要的特征并进行加载,简化使用流程;
- 实时特征秒级读取:PAI-FeatureStore 支持客户对特征进行分类的注册。在实时特征值存在秒级别变化的推荐场景中,对特征链路要求高,当有线上请求来读取特征时,PAI-FeatureStore会判断需要读取的若为实时特征,直接对在线存储的进行读取。上千个实时特征的读取可以在15ms,满足低延迟要求;
- 多版本特征管理:PAI-FeatureStore 支持增量挖掘特征,解决特征种类复杂,线上数据来源多样的问题。方便线上模型迭代,同时节约存储资源;
此外,PAI-FeatureStore 还有深度结合PAI全链路推荐系统PAI-REC,实现离在线一致性检查;通过SDK可直接使用 PAI-FeatureStore 所有产品能力;支持 PAI-EAS 直接从 MaxCompute 拉取特征,减少在线存储压力等功能。

如何使用 PAI-FeatureStore
使用步骤请参考产品文档:https://help.aliyun.com/zh/pai/user-guide/feature-store/
PAI-FeatureStore预计将于2023年9月中下旬在全Region正式上线。
目前PAI-FeatureStore仅供白名单申请使用,如果您希望使用 PAI-FeatureStore 功能,您在钉钉搜索群号“34415007523”或扫描下方二维码进入申请答疑群。

相关文章:
阿里云机器学习PAI全新推出特征平台 (Feature Store),助力AI建模场景特征数据高效利用
推荐算法与系统在全球范围内已得到广泛应用,为用户提供了更个性化和智能化的产品推荐体验。在推荐系统领域,AI建模中特征数据的复用、一致性等问题严重影响了建模效率。阿里云机器学习平台 PAI 推出特征平台(PAI-FeatureStore) 。…...
网络安全工具和资源推荐: 介绍网络安全领域中常用的工具、框架、资源和学习资料
章节1: 前言 随着数字化时代的不断深入,网络安全的重要性愈发凸显。在这个信息爆炸的时代,我们必须保护个人隐私、敏感数据以及网络基础设施免受各种威胁。本文将为您介绍一些网络安全领域中常用的工具、框架、资源和学习资料,帮助您更好地入…...
『C语言入门』探索C语言函数
文章目录 导言一、函数概述定义与作用重要性 二、函数分类库函数自定义函数定义使用好处 三、函数参数实际参数(实参)形式参数(形参)内存分配 四、函数调用传值调用传址调用 五、函数嵌套调用与链式访问嵌套调用链式访问 六、函数…...
Django基础3——视图函数
文章目录 一、基本了解1.1 Django内置函数1.2 http请求流程 二、HttpRequest对象(接受客户端请求)2.1 常用属性2.2 常用方法2.3 服务端接收URL参数2.4 QueryDict对象2.5 案例2.5.1 表单GET提交2.5.2 表单POST提交2.5.3 上传文件 三、HttpResponse对象&am…...
python 基础篇 day 4 选择结构—— if 结构
文章目录 if 基础结构单 if 语句if-else 语句if-elif-else 语句嵌套的 if 语句 if 进阶用法使用比较运算符使用逻辑运算符使用 in 关键字range() 函数使用 is 关键字使用 pass 语句 三目运算符语法例子注意补充举例注意 if 基础结构 单 if 语句 if 条件: 执行条件为真时的代码…...
科技赋能,教育革新——大步迈向体育强国梦
在 "全民健身"、"体育强国建设"战略的推进下,体育考试成绩被纳入重要升学考试且分值不断提高,体育科目的地位逐步上升到前所未有的高度,在此趋势下,体育教学正演变出更多元化、个性化的需求。然而现实中却面临…...
【秋招基础】后端开发——笔面试常见题目
综述: 💞目的:本系列是个人整理为了秋招算法的,整理期间苛求每个知识点,平衡理解简易度与深入程度。 🥰来源:材料主要源于网上知识点进行的,每个代码参考热门博客和GPT3.5࿰…...
自定义loadbalance实现feignclient的自定义路由
自定义loadbalance实现feignclient的自定义路由 项目背景 服务A有多个同事同时开发,每个同事都在dev或者test环境发布自己的代码,注册到注册中心有好几个(本文nacos为例),这时候调用feign可能会导致请求到不同分支的服务上面,会…...
论文笔记:从不平衡数据流中学习的综述: 分类、挑战、实证研究和可重复的实验框架
0 摘要 论文:A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework 发表:2023年发表在Machine Learning上。 源代码:https://github.com/canoalberto/imba…...
C#设计模式六大原则之--迪米特法则
设计模式六大原则是单一职责原则、里氏替换原则、依赖倒置原则、接口隔离原则、迪米特法则、开闭原则。它们不是要我们刻板的遵守,而是根据实际需要灵活运用。只要对它们的遵守程度在一个合理的范围内,努为做到一个良好的设计。本文主要介绍一下.NET(C#)…...
一次js请求一般情况下有哪些地方会有缓存处理?
目录 1、DNS缓存 2、CDN缓存 3、浏览器缓存 4、服务器缓存 1、DNS缓存 DNS缓存指DNS返回了正确的IP之后,系统就会将这个结果临时储存起来。并且它会为缓存设定一个失效时间 (例如N小时),在这N小时之内,当你再次访问这个网站时࿰…...
CSDN编程题-每日一练(2023-08-24)
CSDN编程题-每日一练(2023-08-24) 一、题目名称:计算公式二、题目名称:蛇形矩阵三、题目名称:小玉家的电费一、题目名称:计算公式 时间限制:1000ms内存限制:256M 题目描述: 给定整数n。 计算公式: n i-1 ∑ ∑ [gcd(i + j, i - j) = 1] i=1 j=1 输入描述: 输入整数n…...
怎么把PDF转成Word?需要注意什么事项?
PDF是一种常见的文档格式,但是与Word文档不同,PDF文件通常不能直接编辑。如果您想编辑PDF文件中的文本,或者想将PDF文件转换为Word文档,下面我们就来看一看把PDF转成Word有哪些方法和注意事项。 PDF转Word工具 有许多将PDF转换为…...
USACO22OPEN Pair Programming G
P8273 [USACO22OPEN] Pair Programming G 题目大意 一个程序由一系列指令组成,每条指令的类型如下: d \times d d,其中 d d d是一个 [ 0 , 9 ] [0,9] [0,9]范围内的整数 s s s,其中 s s s是一个表示变量名称的字符串ÿ…...
实战分享之springboot+easypoi快速业务集成
1.依赖引入 <!--引入EasyPOI--><dependency><groupId>cn.afterturn</groupId><artifactId>easypoi-base</artifactId><version>4.1.0</version></dependency><dependency><groupId>cn.afterturn</group…...
金字塔原理(思考的逻辑)
前言:前面学习了表达的逻辑,那在表达之前,如何组织内容?如何进行思考?接下来看第二篇——思考的逻辑。 目录 应用逻辑顺序 时间顺序 结构顺序 程度顺序 概括各组思想 什么是概括? 思想表达方式 如…...
机器学习之前向传播(Forward Propagation)和反向传播(Back propagation)
前向传播(Forward Propagation)和反向传播(Back propagation)是深度学习中神经网络训练的两个关键步骤。 前向传播(Forward Propagation): 定义:前向传播是指从神经网络的输入层到输…...
Matlab高光谱遥感数据处理与混合像元分解实践技术
光谱和图像是人们观察世界的两种方式,高光谱遥感通过“图谱合一”的技术创新将两者结合起来,大大提高了人们对客观世界的认知能力,本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。以高光谱遥感为核心,构建…...
Docker consul的容器服务注册与发现
前言一、服务注册与发现二、consul 介绍三、consul 部署3.1 consul服务器3.1.1 建立 Consul 服务3.1.2 查看集群信息3.1.3 通过 http api 获取集群信息 3.2 registrator服务器3.2.1 安装 Gliderlabs/Registrator3.2.2 测试服务发现功能是否正常3.2.3 验证 http 和 nginx 服务是…...
Spring注入外部 工厂类Bean
问题 对于一些使用建造者模式的 Bean,我们往往不能直接 new 出来,这些 Bean 如果需要注册到 Spring 容器中,我们就需要使用工厂类。 比如我们项目中经常使用的okhttp: 如果我们想把OkHttpClient注册到Spring容器中,该怎么做? …...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
小木的算法日记-多叉树的递归/层序遍历
🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...
前端开发者常用网站
Can I use网站:一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use:Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站:MDN JavaScript权威网站:JavaScript | MDN...
JDK 17 序列化是怎么回事
如何序列化?其实很简单,就是根据每个类型,用工厂类调用。逐个完成。 没什么漂亮的代码,只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...
