当前位置: 首页 > news >正文

【图像分类】卷积神经网络之LeNet5网络模型结构详解

写在前面:
首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。

1. 前言

LeNet5算法是LeCun在1998年提出的卷积神经网络模型。大约90年代,由于支持向量机等算法的发现,深度学习的发展受到了很大的阻碍(尽管Geoffery Hinton在1986年提出的BP算法(Backpropagation)解决了神经网络的非线性分类学习的问题,但梯度消失的问题没有得到很好的解决)。Lecun等人坚持不懈,依然坚持苦苦研究。1998年,LeCun提出了LeNet5网络来解决手写识别的问题。其被誉为卷积网络的“Hello world”,这足以该算法的重要性。在此之前,LeCun最早在1989年提出了LeNet-1,并在接下来的几年中继续探索,陆续提出了LeNet-4、Boosted LeNet-4等(LeNet-2和LeNet-3并没有找到相关资料,感兴趣的朋友可以继续深挖)。

LeNet5论文:
在这里插入图片描述

LeNet5论文地址:
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

2. LeNet5

LeNet的最

相关文章:

【图像分类】卷积神经网络之LeNet5网络模型结构详解

写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 1. 前言 LeNet5算法是LeCun在1998年提出的卷积神经网络模型。大约90年代,由于支持向量机等算法的发现,深度学习…...

2023-JavaWeb最新整理面试题-TCP、Tomcat、Servlet、JSP等

Java基础面试题 一、JavaWeb专题 1.HTTP响应码有哪些 1、1xx(临时响应) 2、2xx(成功) 3、3xx(重定向):表示要完成请求需要进一步操作 4、4xx(错误):表示请…...

【云原生kubernetes】k8s Ingress使用详解

一、什么是Ingress 在上一篇关于k8s之service的使用一篇中提到,Service对集群之外暴露服务的主要方式有两种,NotePort和LoadBalancer,但这两种方式,都有一定的缺点,具体来说: NodePort 会占用很多集群机器…...

[数据结构]:顺序表(C语言实现)

目录 前言 顺序表实现 01-开发环境 02-文件布局 03-代码 01-主函数 02-头文件 03-SeqListCommon.cpp 04-SeqListPositionOperation.cpp 05-SeqListValueOperation.cpp 结语 前言 此专栏包含408考研数据结构全部内容,除其中使用到C引用外,全为…...

【大厂高频必刷真题100题】《有序矩阵中第 K 小的元素》 真题练习第27题 持续更新~

有序矩阵中第 K 小的元素 给你一个 n x n 矩阵 matrix ,其中每行和每列元素均按升序排序,找到矩阵中第 k 小的元素。 请注意,它是 排序后 的第 k 小元素,而不是第 k 个 不同 的元素。 你必须找到一个内存复杂度优于 O(n^2) 的解决方案。 示例 1: 输入:matrix = [[1,5,9…...

两年外包生涯做完,感觉自己废了一半....

先说一下自己的情况。大专生,17年通过校招进入湖南某软件公司,干了接近2年的点点点,今年年上旬,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了五年的功能测试…...

02- OpenCV绘制图形及图像算术变换 (OpenCV基础) (机器视觉)

知识重点 OpenCV用的最多的色彩空间是HSV. 方便OpenCV做图像处理img2 img.view() # 浅拷贝img3 img.copy() # 深拷贝split(mat) 分割图像的通道: b, g, r cv2.split(img) # b, g, r 都是数组merge((ch1, ch2, ch3)) 融合多个通道cvtColor(img, colorspace): 颜…...

猜数字大小 II

力扣链接 力扣 题目描述: 我们正在玩一个猜数游戏,游戏规则如下: 我从 1 到 n 之间选择一个数字。你来猜我选了哪个数字。如果你猜到正确的数字,就会 赢得游戏 。如果你猜错了,那么我会告诉你,我选的数…...

CCNP350-401学习笔记(251-300题)

251、 Which IPv6 OSPF network type is applied to interface Fa0/0 of R2 by default? A. multipointB. broadcast C. Ethernet D. point-to-point 252、Which EIGRP feature allows the use of leak maps? A. neighborB. Stub C. offset-list D. address-family 253、W…...

掌握MySQL分库分表(二)Mysql数据库垂直分库分表、水平分库分表

文章目录垂直分表拆分方法举例垂直分库水平分表水平分库小结垂直角度(表结构不一样)水平角度(表结构一样)垂直分表 需求:商品表字段太多,每个字段访问频次不⼀样,浪费了IO资源,需要…...

算法训练营 day50 动态规划 单词拆分 多重背包理论基础

算法训练营 day50 动态规划 单词拆分 多重背包理论基础 单词拆分 139. 单词拆分 - 力扣(LeetCode) 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。 注意:不要求字典中出现的单词…...

一文3000字用Postman从0到1实现UI自动化测试

“阅读本文大概需要4分钟。Postman不是做接口测试的吗?为什么还能做UI自动化测试呢? 其实,只要你了解Selenium的运行原理,就可以理解为什么Postman也能实现UI自动化测试了。 Selenium底层原理 运行代码,启动浏览器后…...

2023年美国大学生数学建模C题:预测Wordle结果建模详解+模型代码(一)

目录 前言 一、题目理解 背景 解析 字段含义: 建模要求 二、建模思路...

spring-boot 整合 前端框架 React 增删改查(附源码)

看了很多 关于 SpringBoot 增删改查 的文章 ,但是 React 前端框架这块似乎没什么人玩,一般都是Vue进行整合 ,所以想写一篇关于 React 整合 SpringBoot 增删改查的项目 React 学习区域 React中文教程: https://www.php.cn/doc/react/tutorial/…...

未来的城市:智慧城市定义、特征、应用、场景

智慧城市是通过连接一个地区的物理、经济和社会基础设施,以创新、有效和高效的方式应用和实施技术来发展城市的概念,以改善服务并实现更好的生活质量。智慧城市是一个将信息和通信技术融入日常治理的城市区域,旨在实现效率、改善公共服务、增…...

Qt线程池QThreadPool使用示例

目录前言1.线程池原理介绍2.QThreadPool详细介绍反复执行同一个任务设置线程过期时间线程数量信息3.QThreadPool示例4.总结前言 线程池顾名思义就是同时管理多个线程的"池子",它是一种并发处理技术,在程序中使用线程池能够提高线程的使用效率…...

【Spring】难理解的Aop编程 | 入门?

作者:狮子也疯狂 专栏:《spring开发》 坚持做好每一步,幸运之神自然会驾凌在你的身上 目录一. 🦁 前言二. 🦁 常见概念2.1 常见术语2.2 AOP入门Ⅰ. 🐇 功能场景Ⅱ. 🐇 实现过程2.3 通知类型Ⅰ.…...

2 月 25 日,论道京城 | 云原生开源项目应用实践报名开启

在数字化转型的浪潮中,云原生已经逐渐成为人们关注的焦点。开源社区作为云原生技术创新的根据地,为云原生的产业发展打造了丰富的技术生态圈,也在广泛的实践中源源不断地创造着新的机遇。想知道云原生存储技术实现了怎样的突破吗?…...

第五、六章 贪心算法、回溯算法

贪心算法 适合于贪心算法求解的问题具有:贪心选择性质、最优子结构性质。 贪心算法可以获取到问题的局部最优解,不一定能获取到全局最优解。 贪心算法总是作出在当前看来最好的选择;并且每次贪心选择都能将问题化简为一个更小的与原问题具有…...

k8s-kubectl命令

文章目录一、kubectl 基本命令1、陈述式资源管理方法:2、声明式资源管理办法二、基本信息查看三、项目的生命周期创建kubectl run命令四、金丝雀发布(Canary Release)——陈述式管理方法五、声明式管理方法kubectl create 和 kubectl apply区别一、kubectl 基本命令 1、陈述式…...

XML Group端口详解

在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言: 类加载器 1. …...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知,帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量,能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度,还为机器人、医疗设备和制造业的智…...

webpack面试题

面试题:webpack介绍和简单使用 一、webpack(模块化打包工具)1. webpack是把项目当作一个整体,通过给定的一个主文件,webpack将从这个主文件开始找到你项目当中的所有依赖文件,使用loaders来处理它们&#x…...