当前位置: 首页 > news >正文

概率论与数理统计:第六章:数理统计

文章目录

  • Ch6. 数理统计
    • (一) 总体与样本
    • (二) 统计量 (5个)
      • 2.5个常用统计量
      • 3.矩的概念
    • (三) 抽样分布 (3个)
      • 0.上α分位点
      • 1.χ²分布
      • 2.t分布
      • 3.F分布
    • (四) 抽样分布定理
      • 1.单个正态总体
      • 2.两个正态总体

Ch6. 数理统计

(一) 总体与样本

1.概念:
(1)总体
在这里插入图片描述

(2)样本
简单随机样本,简称样本。样本与总体 独立同分布。(取自总体的样本,相互之间都独立,且与总体分布相同)
在这里插入图片描述

(3)样本的分布
在这里插入图片描述


2.性质:
X 1 , X 2 , X 3 , . . . , X n ( n > 1 ) X_1,X_2,X_3,...,X_n(n>1) X1,X2,X3,...,Xnn>1为来自总体 N(μ,σ²) (σ>0)的简单随机样本(独立同分布), X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\dfrac{1}{n}\sum\limits_{i=1}^nX_i X=n1i=1nXi,则有:
X i ∼ N ( μ , σ 2 ) X_i\sim N(μ,σ²) XiN(μ,σ2)
X ‾ ∼ N ( μ , σ 2 n ) \overline{X} \sim N(μ,\dfrac{σ²}{n}) XN(μ,nσ2)
C o v ( X i , X ‾ ) = σ 2 n {\rm Cov}(X_i,\overline{X})=\dfrac{σ²}{n} Cov(Xi,X)=nσ2

证明:


3.样本与总体 独立同分布,期望相同,方差也相同
①样本的期望与总体的期望相同: E ( X i ) = E ( X ) E(X_i) = E(X) E(Xi)=E(X) ∑ i = 1 n E ( X i ) = n E ( X ) \sum\limits_{i=1}^nE(X_i) = nE(X) i=1nE(Xi)=nE(X)
②样本的方差与总体的方差相同: D ( X i ) = D ( X ) D(X_i) = D(X) D(Xi)=D(X) ∑ i = 1 n D ( X i ) = n D ( X ) \sum\limits_{i=1}^nD(X_i) = nD(X) i=1nD(Xi)=nD(X)



例题1:18年23(2)
例题2:16年23(1)




(二) 统计量 (5个)

1.概念
(1)统计量的定义
在这里插入图片描述

(2)顺序统计量

顺序统计量定义分布函数概率密度
①第n顺序统计量 X ( n ) X_{(n)} X(n) m a x { X 1 , X 2 , . . . , X n } max\{X_1,X_2,...,X_n\} max{X1,X2,...,Xn} [ F ( x ) ] n [F(x)]^n [F(x)]n n [ F ( x ) ] n − 1 f ( x ) n[F(x)]^{n-1}f(x) n[F(x)]n1f(x)
②第1顺序统计量 X ( 1 ) X_{(1)} X(1) m i n { X 1 , X 2 , . . . , X n } min\{X_1,X_2,...,X_n\} min{X1,X2,...,Xn} 1 − [ 1 − F ( x ) ] n 1-[1-F(x)]^n 1[1F(x)]n n [ 1 − F ( x ) ] n − 1 f ( x ) n[1-F(x)]^{n-1}f(x) n[1F(x)]n1f(x)

在这里插入图片描述


2.5个常用统计量

①样本均值: X ˉ = 1 n ∑ i = 1 n X i \bar{X}=\dfrac{1}{n}\sum\limits_{i=1}^nX_i Xˉ=n1i=1nXi   ∴ ∑ i = 1 n X i = n X ˉ \sum\limits_{i=1}^nX_i=n\bar{X} i=1nXi=nXˉ

样本方差: S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S²=\dfrac{1}{n-1}\sum\limits_{i=1}^n(X_i-\bar{X})² S2=n11i=1n(XiXˉ)2 = 1 n − 1 ( ∑ i = 1 n X i 2 − n X ˉ 2 ) =\dfrac{1}{n-1}(\sum\limits_{i=1}^nX_i^2-n\bar{X}^2) =n11(i=1nXi2nXˉ2) E ( S 2 ) = σ 2 E(S^2)=σ² E(S2)=σ2

样本标准差: S = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S=\sqrt{\dfrac{1}{n-1}\sum\limits_{i=1}^n(X_i-\bar{X})²} S=n11i=1n(XiXˉ)2

③样本k阶(原点)矩: A k = 1 n ∑ i = 1 n X i k ( k = 1 , 2 , . . . ) A_k=\dfrac{1}{n}\sum\limits_{i=1}^nX_i^k (k=1,2,...) Ak=n1i=1nXik(k=1,2,...)

④样本k阶中心矩: B k = 1 n ∑ i = 1 n ( X i − X ˉ ) k ( k = 2 , 3 , . . . ) B_k=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X})^k(k=2,3,...) Bk=n1i=1n(XiXˉ)k(k=2,3,...)


①k阶原点矩是 ( X i − 0 ) k (X_i-0)^k (Xi0)k,k阶中心矩是 ( X i − X ˉ ) k (X_i-\bar{X})^k (XiXˉ)k
②样本均值是一阶原点矩,二阶中心矩 B 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 = n − 1 n S 2 B_2=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X})²=\dfrac{n-1}{n}S^2 B2=n1i=1n(XiXˉ)2=nn1S2
在这里插入图片描述


3.矩的概念

①原点矩 A

样本k阶原点矩 A k A_k Ak总体k阶原点矩
A 1 = 1 n ∑ i = 1 n X i = X ˉ A_1=\dfrac{1}{n}\sum\limits_{i=1}^nX_i=\bar{X} A1=n1i=1nXi=Xˉ
(样本一阶原点矩,即为均值)
E(X)
A 2 = 1 n ∑ i = 1 n X i 2 A_2=\dfrac{1}{n}\sum\limits_{i=1}^nX_i^2 A2=n1i=1nXi2E(X²)
A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , . . . A_k=\dfrac{1}{n}\sum\limits_{i=1}^nX_i^k,k=1,2,... Ak=n1i=1nXik,k=1,2,...E(Xk)

②中心距 B

样本k阶中心矩 B k B_k Bk总体k阶中心矩
B 1 = 1 n ∑ i = 1 n ( X i − X ˉ ) B_1=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X}) B1=n1i=1n(XiXˉ) E ( X − E X ) E(X-EX) E(XEX)
B 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 = n − 1 n S 2 B_2=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X})²=\dfrac{n-1}{n}S^2 B2=n1i=1n(XiXˉ)2=nn1S2 E [ ( X − E X ) 2 ] = D X E[(X-EX)²]=DX E[(XEX)2]=DX
B k = 1 n ∑ i = 1 n ( X i − X ˉ ) k B_k=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X})^k Bk=n1i=1n(XiXˉ)k E [ ( X − E X ) k ] E[(X-EX)^k] E[(XEX)k]

总体矩的矩估计量为样本矩:
①EX的矩估计量为 A 1 = 1 n ∑ i = 1 n X i = X ˉ A_1=\dfrac{1}{n}\sum\limits_{i=1}^nX_i=\bar{X} A1=n1i=1nXi=Xˉ
②DX的矩估计量为 B 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 = n − 1 n S 2 B_2=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X})²=\dfrac{n-1}{n}S^2 B2=n1i=1n(XiXˉ)2=nn1S2



(三) 抽样分布 (3个)

三大抽样分布,均与正态总体有关。总体与样本服从标准正态分布N(0,1)


0.上α分位点

正态分布的上α分位点: Φ ( Z α 2 ) = 1 − α 2 Φ(Z_{\frac{α}{2}})=1-\dfrac{α}{2} Φ(Z2α)=12α

在这里插入图片描述
在这里插入图片描述


1.χ²分布

1.χ²分布的定义
X 1 ∼ N ( 0 , 1 ) X_1\sim N(0,1) X1N(0,1),则 X 1 2 ∼ χ 2 ( 1 ) X_1^2\sim χ^2(1) X12χ2(1)

设X1,X2,…,Xn为正态总体N(0,1)的样本 ( X i X_i Xi相互独立且同分布),则把统计量
χ 2 = X 1 2 + X 2 2 + . . . + X n 2 χ^2=X_1^2+X_2^2+...+X_n^2 χ2=X12+X22+...+Xn2
服从的分布称为 自由度为n的χ²分布,记作 χ²~χ²(n)


2.χ²分布的上α分位点
在这里插入图片描述


3.χ²分布的性质

  1. χ²分布的数字特征: E(χ²)=n,D(χ²)=2n
  2. χ²分布的独立可加性:设 χ 1 2 ∼ χ 2 ( n 1 ) , χ 2 2 ∼ χ 2 ( n 2 ) χ²_1\sim χ²(n_1),χ²_2\sim χ²(n_2) χ12χ2(n1),χ22χ2(n2),且 χ 1 2 χ²_1 χ12 χ 2 2 χ²_2 χ22相互独立,则 χ 1 2 + χ 2 2 ∼ χ 2 ( n 1 + n 2 ) χ²_1+χ²_2\simχ²(n_1+n_2) χ12+χ22χ2(n1+n2)

例题1:
在这里插入图片描述

分析:
在这里插入图片描述

答案: 1 20 \dfrac{1}{20} 201 1 100 \dfrac{1}{100} 1001、2


例题2:11年23.(2)



2.t分布

1.t分布定义
X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) X\sim N(0,1), Y\sim χ^2(n) XN(0,1),Yχ2(n),且X,Y相互独立,则把统计量 t = X Y n t=\dfrac{X}{\sqrt{\dfrac{Y}{n}}} t=nY X
服从的分布称为自由度为n的t分布,记作 t ∼ t ( n ) t\sim t(n) tt(n)

t(n)的概率密度h(t)关于t=0对称。当自由度n→∞时,t分布的极限就是标准正态分布,n≥30即可


2.t分布的上α分位点
x = t α ( n ) x=t_α(n) x=tα(n)右侧的面积(概率)为α,则称 t α ( n ) t_α(n) tα(n)为上α分位点

x = t 1 − α ( n ) x=t_{1-α}(n) x=t1α(n)右侧的面积(概率)为1-α,则称 t 1 − α ( n ) t_{1-α}(n) t1α(n)为上1-α分位点

在这里插入图片描述

t分布的概率密度是偶函数
在这里插入图片描述


3.t分布性质
1. E ( t ) = 0 E(t)=0 E(t)=0
2.上α分位点 t 1 − α ( n ) = − t α ( n ) t_{1-α}(n)=-t_α(n) t1α(n)=tα(n)



3.F分布

1.F分布定义
X ∼ χ 2 ( n 1 ) , Y ∼ χ 2 ( n 2 ) X\sim χ^2(n_1),Y\sim χ^2(n_2) Xχ2(n1),Yχ2(n2),且X,Y相互独立,则把随机变量 F = X n 1 Y n 2 F=\dfrac{\dfrac{X}{n_1}}{\dfrac{Y}{n_2}} F=n2Yn1X

服从的分布称为自由度为(n1,n2)的F分布,其中n1称为第一自由度,n2称为第二自由度,记作 F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) FF(n1,n2)


2.F分布性质
1.若 F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) FF(n1,n2),则 1 F ∼ F ( n 2 , n 1 ) \dfrac{1}{F}\sim F(n_2,n_1) F1F(n2,n1)

2.上α分位点 1 F α ( n 1 , n 2 ) = F 1 − α ( n 2 , n 1 ) \dfrac{1}{F_α(n_1,n_2)}=F_{1-α}(n_2,n_1) Fα(n1,n2)1=F1α(n2,n1)


3.t分布与F分布的关系
若 t ∼ t ( n ) ,则 t 2 ∼ F ( 1 , n ) , 1 t 2 ∼ F ( n , 1 ) 若t\sim t(n),则t^2\sim F(1,n),\dfrac{1}{t^2}\sim F(n,1) tt(n),则t2F(1,n)t21F(n,1)



例题1:03年12.   t分布与F分布的关系
在这里插入图片描述

分析:
X ∼ t ( n ) , X 2 ∼ F ( 1 , n ) , 1 X 2 ∼ F ( n , 1 ) X\sim t(n),X²\sim F(1,n),\dfrac{1}{X²}\sim F(n,1) Xt(n)X2F(1,n)X21F(n,1)

答案:C


例题2:13年8.
在这里插入图片描述

分析:X~t(n), 则 X²=Y~F(1,n)
∴P{Y>c²}=P{X²>c²}=P{X>c}+P{X<-c}=α+α=2α

答案:C




(四) 抽样分布定理

设总体 X ∼ N ( μ , σ 2 ) X\sim N(μ,σ²) XN(μσ2),样本为 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn,独立同分布于总体

1.单个正态总体

1.样本均值: X ˉ ∼ N ( μ , σ 2 n ) \bar{X}\sim N(μ,\dfrac{σ²}{n}) XˉN(μ,nσ2) X ˉ − μ σ n = ( X ˉ − μ ) n σ ∼ N ( 0 , 1 ) \dfrac{\bar{X}-μ}{\dfrac{σ}{\sqrt{n}}}=\dfrac{(\bar{X}-μ)\sqrt{n}}{σ}\sim N(0,1) n σXˉμ=σ(Xˉμ)n N(0,1)
在这里插入图片描述


2. ∑ i = 1 n ( X i − μ σ ) 2 ∼ χ 2 ( n ) \sum\limits_{i=1}^n(\dfrac{X_i-μ}{σ})^2\sim \chi^2(n) i=1n(σXiμ)2χ2(n)


3. ∑ i = 1 n ( X i − X ‾ σ ) 2 = \sum\limits_{i=1}^n(\dfrac{X_i-\overline{X}}{σ})^2= i=1n(σXiX)2= ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \dfrac{(n-1)S^2}{σ^2}\sim \chi^2(n-1) σ2(n1)S2χ2(n1)

E ( S 2 ) = σ 2 , D ( S 2 ) = 2 σ 4 n − 1 E(S²)=σ²,D(S²)=\dfrac{2σ^4}{n-1} E(S2)=σ2D(S2)=n12σ4


4. ( X ˉ − μ ) S n = n ( X ˉ − μ ) S ∼ t ( n − 1 ) \dfrac{(\bar{X}-μ)}{\dfrac{S}{\sqrt{n}}}=\dfrac{\sqrt{n}(\bar{X}-μ)}{S}\sim t(n-1) n S(Xˉμ)=Sn (Xˉμ)t(n1)

n ( X ˉ − μ ) 2 S 2 ∼ F ( 1 , n − 1 ) \dfrac{n(\bar{X}-μ)^2}{S^2}\sim F(1,n-1) S2n(Xˉμ)2F(1,n1)

在这里插入图片描述


5.样本均值 X ˉ \bar{X} Xˉ与样本方差 S 2 S^2 S2相互独立,即 E ( X ˉ S ) = E ( X ˉ ) E ( S ) E(\bar{X}S)=E(\bar{X})E(S) E(XˉS)=E(Xˉ)E(S)



例题1:23李林四(四)16.
在这里插入图片描述

分析:样本均值 X ˉ \bar{X} Xˉ与样本方差 S 2 S^2 S2相互独立,即 E ( X ˉ S ) = E ( X ˉ ) E ( S ) E(\bar{X}S)=E(\bar{X})E(S) E(XˉS)=E(Xˉ)E(S)

在这里插入图片描述

答案: 1 n 3 + 1 n 2 \dfrac{1}{n^3}+\dfrac{1}{n^2} n31+n21


例题2:05年14.   抽样分布定理、F分布
在这里插入图片描述

分析:由抽样分布定理得,ABC均错的很离谱。
D: X i ∼ N ( 0 , 1 ) X_i\sim N(0,1) XiN(0,1),即 X i X_i Xi服从标准正态分布
X 1 2 1 ∑ i = 2 n X i 2 n − 1 ∼ F ( 1 , n − 1 ) \dfrac{\frac{X_1^2}{1}}{\frac{\sum\limits_{i=2}^nX_i^2}{n-1}}\sim F(1,n-1) n1i=2nXi21X12F(1,n1),D正确

答案:D


例题3:17年8.   抽样分布定理
在这里插入图片描述

分析:

答案:B


例题4:23李林六套卷(六)10.
在这里插入图片描述

分析:AB明显正确
C. ( n − 1 ) S 2 σ 2 = ∑ i = 1 n ( X i − X ˉ σ ) 2 ∼ χ 2 ( n − 1 ) \dfrac{(n-1)S^2}{σ^2}=\sum\limits_{i=1}^n(\dfrac{X_i-\bar{X}}{σ})^2\simχ^2(n-1) σ2(n1)S2=i=1n(σXiXˉ)2χ2(n1),且卡方分布具有独立可加性,∴C正确
D.应该改为2n-2

答案:D



2.两个正态总体



相关文章:

概率论与数理统计:第六章:数理统计

文章目录 Ch6. 数理统计(一) 总体与样本(二) 统计量 (5个)2.5个常用统计量3.矩的概念 (三) 抽样分布 (3个)0.上α分位点1.χ分布2.t分布3.F分布 (四) 抽样分布定理1.单个正态总体2.两个正态总体 Ch6. 数理统计 (一) 总体与样本 1.概念&#xff1a; (1)总体 (2)样本 简单随机…...

拥塞控制(TCP限制窗口大小的机制)

拥塞控制机制可以使滑动窗口在保证可靠性的前提下&#xff0c;提高传输效率 关于滑动窗口的属性以及部分机制推荐看TCP中窗口和滑动窗口的含义以及流量控制 拥塞控制出现的原因 看了上面推荐的博客我们已经知道了&#xff0c;由于接收方接收数据的能力有限&#xff0c;所以要通…...

校园供水系统智能管理

import pandas as pd data1pd.read_excel("C://Users//JJH//Desktop//E//附件_一季度.xlsx") data2pd.read_excel("C://Users//JJH//Desktop//E//附件_二季度.xlsx") data3pd.read_excel("C://Users//JJH//Desktop//E//附件_三季度.xlsx") data4…...

Flask-SocketIO和Flask-Login联合开发socketio权限系统

设置 Flask, Flask-SocketIO, Flask-Login: 首先&#xff0c;确保安装了必要的库: pip install Flask Flask-SocketIO Flask-Login基础设置: from flask import Flask, render_template, redirect, url_for, request from flask_socketio import SocketIO, emit from flask_…...

航空电子设备中的TSN通讯架构—直升机

前言 以太网正在迅速取代传统网络&#xff0c;成为航空电子设备和任务系统的核心高速网络。本文提出了以太网时间敏感网络(TSN)在航空电子设备上应用的技术优势问题。在实际应用中&#xff0c;TSN已成为一个具有丰富的机制和协议的工具箱&#xff0c;可满足与时间和可靠性相关…...

elment-ui中使用el-steps案例

el-steps案例 样式 代码 <div class"active-box"><div class"active-title">请完善</div><el-steps :active"active" finish-status"success" align-center><el-step title"第一步" /><…...

FPGA解析串口指令控制spi flash完成连续写、读、擦除数据

前言 最近在收拾抽屉时找到一个某宝的spi flash模块&#xff0c;如下图所示&#xff0c;我就想用能不能串口来读写flash&#xff0c;大致过程就是&#xff0c;串口向fpga发送一条指令&#xff0c;fpga解析出指令控制flah&#xff0c;这个指令协议目前就是&#xff1a; 55 AA …...

msvcp120.dll丢失的解决方法,分享三种快速修复的方法

今天&#xff0c;我将和大家分享一个关于电脑问题的解决方法——msvcp120.dll丢失的解决方法。希望对大家有所帮助。 首先&#xff0c;让我们来了解一下msvcp120.dll文件。msvcp120.dll是Microsoft Visual C 2010 Redistributable Package的一个组件&#xff0c;它包含了一些运…...

mysql 8.0 窗口函数 之 序号函数 与 sql server 序号函数 一样

sql server 序号函数 序号函数 ROW_NUMBER() 顺序排序RANK() 并列排序&#xff0c;会跳过重复的序号&#xff0c;比如序号为1&#xff0c;1&#xff0c;3DENSE_RANK() 并列排序&#xff0c;不会跳过重复的序号&#xff0c;比如 序号为 1&#xff0c;1&#xff0c;2 语法结构…...

fastgpt构建镜像

1.把client目录复制到服务器 .next和node_modules文件夹不用上传到服务器 在服务器目录运行 docker build -t fastgpt:1.0.3 . 构建服务 再运行 docker ps 就可以看到容器了...

Git笔记--分支常用命令

目录 1--git branch -v 2--git branch 3--git checkout 4--git merge 1--git branch -v git branch -v git branch -v 用于查看分支版本&#xff1b; 2--git branch git branch xxxxx # xxxxx表示分支名 git branch 用于创建分支&#xff1b; 3--git checkout git check…...

常见设计模式学习+面试总结

一 设计模式简介 二 面试总结 1 什么是单例模式&#xff1f;都有哪些地方用到单例&#xff1f; 内存中只会创建且仅创建一次对象的设计模式&#xff0c;保证一个类只有一个实例&#xff0c;并且提供一个访问该全局访问点。 应用场景&#xff1a; 网站的计数器&#xff0c;一般…...

sql解决取多个截至每个月的数据

问题&#xff1a;需要查询1月、1-2月、1-3月… 1-12月&#xff0c;分区间的累计数据&#xff0c;在同一个sql语句里面实现。 多个分开查询效率不高&#xff0c;并且数据手动合并麻烦。 with t1 as ( SELECT *,CASE WHEN insutype 390 THEN 居民 ELSE 职工 END 人员类别,SUBST…...

数据采集:selenium 获取 CDN 厂家各省市节点 IP

写在前面 工作需要遇到&#xff0c;简单整理理解不足小伙伴帮忙指正 对每个人而言&#xff0c;真正的职责只有一个&#xff1a;找到自我。然后在心中坚守其一生&#xff0c;全心全意&#xff0c;永不停息。所有其它的路都是不完整的&#xff0c;是人的逃避方式&#xff0c;是对…...

【el-tree】树形组件图标的自定义

饿了么树形组件的图标自定义 默认样式: 可以看到el-tree组件左侧自带展开与收起图标,咱们可以把它隐藏:: .groupList {::v-deep .el-tree-node { .el-icon-caret-right {display: none;} } } 我的全部代码 <div class"groupList"><el…...

UltralSO软碟通制作Linux系统盘

第一步&#xff1a; 下载镜像 阿里云下载地址&#xff1a;https://mirrors.aliyun.com/centos-vault/ 按照需求选择系统版本&#xff0c;我这要求安装CentOS7.5的系统&#xff0c;我以CentOS7.5为例 第二步&#xff1a; 下载UltralSO软件 官网下载地址&#xff1a;https://cn.…...

yolov8训练心得 持续更新

目录 优化器 lion优化器,学习率0.0001,训练效果: 学习率衰减 600个batch衰减0.7,发现效果较好...

超越界限:大模型应用领域扩展,探索文本分类、文本匹配、信息抽取和性格测试等多领域应用

超越界限&#xff1a;大模型应用领域扩展&#xff0c;探索文本分类、文本匹配、信息抽取和性格测试等多领域应用 随着 ChatGPT 和 GPT-4 等强大生成模型出现&#xff0c;自然语言处理任务方式正在逐步发生改变。鉴于大模型强大的任务处理能力&#xff0c;未来我们或将不再为每…...

Compose - 基本使用

一、概念 1.1 Compose优势 由一个个可以组合的Composable函数拼成界面&#xff0c;方便维护和复用。布局模型不允许多次测量&#xff0c;提升了性能。Compose可以和View互操作&#xff08;相互包含对方&#xff09;。 1.2 声明式UI APP展示的数据绝大多数不是静态数据而是会…...

Unity3D Pico VR 手势识别

本文章使用的 Unity3D版本: 2021.3.6 , Pico SDK 230 ,Pico OS v.5.7.1 硬件Pico 4 Pico SDK可以去Pico官网下载SDK 导入SDK 第一步&#xff1a;创建Unity3D项目 第二步&#xff1a;导入 PICO Unity Integration SDK 选择 Windows > Package Manager。 在 Packag…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...