当前位置: 首页 > news >正文

校园供水系统智能管理

import pandas as pd
data1=pd.read_excel("C://Users//JJH//Desktop//E//附件_一季度.xlsx")
data2=pd.read_excel("C://Users//JJH//Desktop//E//附件_二季度.xlsx")
data3=pd.read_excel("C://Users//JJH//Desktop//E//附件_三季度.xlsx")
data4=pd.read_excel("C://Users//JJH//Desktop//E//附件_四季度.xlsx")
data1
水表名水表号采集时间上次读数当前读数用量
0司法鉴定中心02019/1/1 00:15:002157.12157.10.0
1司法鉴定中心02019/1/1 00:30:002157.12157.10.0
2司法鉴定中心02019/1/1 00:45:002157.12157.10.0
3司法鉴定中心02019/1/1 01:00:002157.12157.10.0
4司法鉴定中心02019/1/1 01:15:002157.12157.10.0
.....................
729278物业30301001022019/3/31 22:45:0050.950.90.0
729279物业30301001022019/3/31 23:00:0050.950.90.0
729280物业30301001022019/3/31 23:15:0050.950.90.0
729281物业30301001022019/3/31 23:30:0050.950.90.0
729282物业30301001022019/3/31 23:45:0050.950.90.0

729283 rows × 6 columns

data1.isnull().sum()
水表名     0
水表号     0
采集时间    0
上次读数    0
当前读数    0
用量      0
dtype: int64
data2.isnull().sum()
水表名     0
水表号     0
采集时间    0
上次读数    0
当前读数    0
用量      0
dtype: int64
data3.isnull().sum()
水表名     0
水表号     0
采集时间    0
上次读数    0
当前读数    0
用量      0
dtype: int64
data4.isnull().sum()
水表名     0
水表号     0
采集时间    0
上次读数    0
当前读数    0
用量      0
dtype: int64
import numpy as np
# 合并数据
data1['季度'] = pd.Series(["一季度" for i in range(len(data1.index))])
data2['季度'] = pd.Series(["二季度" for i in range(len(data2.index))])
data3['季度'] = pd.Series(["三季度" for i in range(len(data3.index))])
data4['季度'] = pd.Series(["四季度" for i in range(len(data4.index))])
data1
水表名水表号采集时间上次读数当前读数用量季度
0司法鉴定中心02019/1/1 00:15:002157.12157.10.0一季度
1司法鉴定中心02019/1/1 00:30:002157.12157.10.0一季度
2司法鉴定中心02019/1/1 00:45:002157.12157.10.0一季度
3司法鉴定中心02019/1/1 01:00:002157.12157.10.0一季度
4司法鉴定中心02019/1/1 01:15:002157.12157.10.0一季度
........................
729278物业30301001022019/3/31 22:45:0050.950.90.0一季度
729279物业30301001022019/3/31 23:00:0050.950.90.0一季度
729280物业30301001022019/3/31 23:15:0050.950.90.0一季度
729281物业30301001022019/3/31 23:30:0050.950.90.0一季度
729282物业30301001022019/3/31 23:45:0050.950.90.0一季度

729283 rows × 7 columns

data = data1.append([data2,data3,data4],ignore_index=True) # 添加合并
data
C:\Users\JJH\AppData\Local\Temp\ipykernel_31264\4019438690.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.data = data1.append([data2,data3,data4],ignore_index=True) # 添加合并
水表名水表号采集时间上次读数当前读数用量季度
0司法鉴定中心02019/1/1 00:15:002157.12157.10.0一季度
1司法鉴定中心02019/1/1 00:30:002157.12157.10.0一季度
2司法鉴定中心02019/1/1 00:45:002157.12157.10.0一季度
3司法鉴定中心02019/1/1 01:00:002157.12157.10.0一季度
4司法鉴定中心02019/1/1 01:15:002157.12157.10.0一季度
........................
3086783消防36203032002019/12/31 22:45:0022.022.00.0四季度
3086784消防36203032002019/12/31 23:00:0022.022.00.0四季度
3086785消防36203032002019/12/31 23:15:0022.022.00.0四季度
3086786消防36203032002019/12/31 23:30:0022.022.00.0四季度
3086787消防36203032002019/12/31 23:45:0022.022.00.0四季度

3086788 rows × 7 columns

x=data[['水表名','用量','采集时间']]
x
水表名用量采集时间
0司法鉴定中心0.02019/1/1 00:15:00
1司法鉴定中心0.02019/1/1 00:30:00
2司法鉴定中心0.02019/1/1 00:45:00
3司法鉴定中心0.02019/1/1 01:00:00
4司法鉴定中心0.02019/1/1 01:15:00
............
3086783消防0.02019/12/31 22:45:00
3086784消防0.02019/12/31 23:00:00
3086785消防0.02019/12/31 23:15:00
3086786消防0.02019/12/31 23:30:00
3086787消防0.02019/12/31 23:45:00

3086788 rows × 3 columns

x1=x[x['水表名']=='消防']
x1
水表名用量采集时间
1500912消防0.02019/4/22 12:15:00
1500913消防0.02019/4/22 12:30:00
1500914消防0.02019/4/22 12:45:00
1500915消防0.02019/4/22 13:00:00
1500916消防0.02019/4/22 13:15:00
............
3086783消防0.02019/12/31 22:45:00
3086784消防0.02019/12/31 23:00:00
3086785消防0.02019/12/31 23:15:00
3086786消防0.02019/12/31 23:30:00
3086787消防0.02019/12/31 23:45:00

23984 rows × 3 columns

import matplotlib.pyplot as plt
print(len(x1))
23984
# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov']  # 自定义刻度标签
x = range(23984)# 自定义x轴刻度
num_ticks = 6  # 指定刻度数量
step = len(x) // num_ticks  # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)]  # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x1['采集时间'],x1['用量'],color='black',linewidth=0.5)
plt.show()       


在这里插入图片描述

x=data[['水表名','用量','采集时间']]
x
水表名用量采集时间
0司法鉴定中心0.02019/1/1 00:15:00
1司法鉴定中心0.02019/1/1 00:30:00
2司法鉴定中心0.02019/1/1 00:45:00
3司法鉴定中心0.02019/1/1 01:00:00
4司法鉴定中心0.02019/1/1 01:15:00
............
3086783消防0.02019/12/31 22:45:00
3086784消防0.02019/12/31 23:00:00
3086785消防0.02019/12/31 23:15:00
3086786消防0.02019/12/31 23:30:00
3086787消防0.02019/12/31 23:45:00

3086788 rows × 3 columns

x2=x[x['水表名']=='XXX第一学生宿舍']
x2
水表名用量采集时间
220372XXX第一学生宿舍0.122019/1/1 00:15:00
220373XXX第一学生宿舍0.122019/1/1 00:30:00
220374XXX第一学生宿舍0.122019/1/1 00:45:00
220375XXX第一学生宿舍0.122019/1/1 01:00:00
220376XXX第一学生宿舍0.122019/1/1 01:15:00
............
2533541XXX第一学生宿舍0.402019/12/31 22:45:00
2533542XXX第一学生宿舍0.402019/12/31 23:00:00
2533543XXX第一学生宿舍0.502019/12/31 23:15:00
2533544XXX第一学生宿舍0.502019/12/31 23:30:00
2533545XXX第一学生宿舍0.502019/12/31 23:45:00

35039 rows × 3 columns

# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov']  # 自定义刻度标签# 自定义x轴刻度
num_ticks = 6  # 指定刻度数量
step = len(x2) // num_ticks  # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)]  # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x2['采集时间'],x2['用量'],color='black',linewidth=0.5)
plt.show()       

在这里插入图片描述

x=data[['水表名','用量','采集时间']]
x3=x[x['水表名']=='留学生楼(新)']
# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov']  # 自定义刻度标签# 自定义x轴刻度
num_ticks = 6  # 指定刻度数量
step = len(x3) // num_ticks  # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)]  # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x3['采集时间'],x3['用量'],color='black',linewidth=0.3)
plt.show()       


在这里插入图片描述

x=data[['水表名','用量','采集时间']]
x4=x[x['水表名']=='XXX教学大楼总表']
# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov']  # 自定义刻度标签# 自定义x轴刻度
num_ticks = 6  # 指定刻度数量
step = len(x4) // num_ticks  # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)]  # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x4['采集时间'],x4['用量'],color='black',linewidth=0.3)
plt.show()       


在这里插入图片描述

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 指定字体为SimHei
labels = ['消防', '留学生楼(新)', 'XXX教学大楼总表']plt.boxplot([x1['用量'],x3['用量'],x4['用量']])plt.xticks(range(1, 4), labels)
# 显示图形
plt.show()

在这里插入图片描述

相关文章:

校园供水系统智能管理

import pandas as pd data1pd.read_excel("C://Users//JJH//Desktop//E//附件_一季度.xlsx") data2pd.read_excel("C://Users//JJH//Desktop//E//附件_二季度.xlsx") data3pd.read_excel("C://Users//JJH//Desktop//E//附件_三季度.xlsx") data4…...

Flask-SocketIO和Flask-Login联合开发socketio权限系统

设置 Flask, Flask-SocketIO, Flask-Login: 首先,确保安装了必要的库: pip install Flask Flask-SocketIO Flask-Login基础设置: from flask import Flask, render_template, redirect, url_for, request from flask_socketio import SocketIO, emit from flask_…...

航空电子设备中的TSN通讯架构—直升机

前言 以太网正在迅速取代传统网络,成为航空电子设备和任务系统的核心高速网络。本文提出了以太网时间敏感网络(TSN)在航空电子设备上应用的技术优势问题。在实际应用中,TSN已成为一个具有丰富的机制和协议的工具箱,可满足与时间和可靠性相关…...

elment-ui中使用el-steps案例

el-steps案例 样式 代码 <div class"active-box"><div class"active-title">请完善</div><el-steps :active"active" finish-status"success" align-center><el-step title"第一步" /><…...

FPGA解析串口指令控制spi flash完成连续写、读、擦除数据

前言 最近在收拾抽屉时找到一个某宝的spi flash模块&#xff0c;如下图所示&#xff0c;我就想用能不能串口来读写flash&#xff0c;大致过程就是&#xff0c;串口向fpga发送一条指令&#xff0c;fpga解析出指令控制flah&#xff0c;这个指令协议目前就是&#xff1a; 55 AA …...

msvcp120.dll丢失的解决方法,分享三种快速修复的方法

今天&#xff0c;我将和大家分享一个关于电脑问题的解决方法——msvcp120.dll丢失的解决方法。希望对大家有所帮助。 首先&#xff0c;让我们来了解一下msvcp120.dll文件。msvcp120.dll是Microsoft Visual C 2010 Redistributable Package的一个组件&#xff0c;它包含了一些运…...

mysql 8.0 窗口函数 之 序号函数 与 sql server 序号函数 一样

sql server 序号函数 序号函数 ROW_NUMBER() 顺序排序RANK() 并列排序&#xff0c;会跳过重复的序号&#xff0c;比如序号为1&#xff0c;1&#xff0c;3DENSE_RANK() 并列排序&#xff0c;不会跳过重复的序号&#xff0c;比如 序号为 1&#xff0c;1&#xff0c;2 语法结构…...

fastgpt构建镜像

1.把client目录复制到服务器 .next和node_modules文件夹不用上传到服务器 在服务器目录运行 docker build -t fastgpt:1.0.3 . 构建服务 再运行 docker ps 就可以看到容器了...

Git笔记--分支常用命令

目录 1--git branch -v 2--git branch 3--git checkout 4--git merge 1--git branch -v git branch -v git branch -v 用于查看分支版本&#xff1b; 2--git branch git branch xxxxx # xxxxx表示分支名 git branch 用于创建分支&#xff1b; 3--git checkout git check…...

常见设计模式学习+面试总结

一 设计模式简介 二 面试总结 1 什么是单例模式&#xff1f;都有哪些地方用到单例&#xff1f; 内存中只会创建且仅创建一次对象的设计模式&#xff0c;保证一个类只有一个实例&#xff0c;并且提供一个访问该全局访问点。 应用场景&#xff1a; 网站的计数器&#xff0c;一般…...

sql解决取多个截至每个月的数据

问题&#xff1a;需要查询1月、1-2月、1-3月… 1-12月&#xff0c;分区间的累计数据&#xff0c;在同一个sql语句里面实现。 多个分开查询效率不高&#xff0c;并且数据手动合并麻烦。 with t1 as ( SELECT *,CASE WHEN insutype 390 THEN 居民 ELSE 职工 END 人员类别,SUBST…...

数据采集:selenium 获取 CDN 厂家各省市节点 IP

写在前面 工作需要遇到&#xff0c;简单整理理解不足小伙伴帮忙指正 对每个人而言&#xff0c;真正的职责只有一个&#xff1a;找到自我。然后在心中坚守其一生&#xff0c;全心全意&#xff0c;永不停息。所有其它的路都是不完整的&#xff0c;是人的逃避方式&#xff0c;是对…...

【el-tree】树形组件图标的自定义

饿了么树形组件的图标自定义 默认样式: 可以看到el-tree组件左侧自带展开与收起图标,咱们可以把它隐藏:: .groupList {::v-deep .el-tree-node { .el-icon-caret-right {display: none;} } } 我的全部代码 <div class"groupList"><el…...

UltralSO软碟通制作Linux系统盘

第一步&#xff1a; 下载镜像 阿里云下载地址&#xff1a;https://mirrors.aliyun.com/centos-vault/ 按照需求选择系统版本&#xff0c;我这要求安装CentOS7.5的系统&#xff0c;我以CentOS7.5为例 第二步&#xff1a; 下载UltralSO软件 官网下载地址&#xff1a;https://cn.…...

yolov8训练心得 持续更新

目录 优化器 lion优化器,学习率0.0001,训练效果: 学习率衰减 600个batch衰减0.7,发现效果较好...

超越界限:大模型应用领域扩展,探索文本分类、文本匹配、信息抽取和性格测试等多领域应用

超越界限&#xff1a;大模型应用领域扩展&#xff0c;探索文本分类、文本匹配、信息抽取和性格测试等多领域应用 随着 ChatGPT 和 GPT-4 等强大生成模型出现&#xff0c;自然语言处理任务方式正在逐步发生改变。鉴于大模型强大的任务处理能力&#xff0c;未来我们或将不再为每…...

Compose - 基本使用

一、概念 1.1 Compose优势 由一个个可以组合的Composable函数拼成界面&#xff0c;方便维护和复用。布局模型不允许多次测量&#xff0c;提升了性能。Compose可以和View互操作&#xff08;相互包含对方&#xff09;。 1.2 声明式UI APP展示的数据绝大多数不是静态数据而是会…...

Unity3D Pico VR 手势识别

本文章使用的 Unity3D版本: 2021.3.6 , Pico SDK 230 ,Pico OS v.5.7.1 硬件Pico 4 Pico SDK可以去Pico官网下载SDK 导入SDK 第一步&#xff1a;创建Unity3D项目 第二步&#xff1a;导入 PICO Unity Integration SDK 选择 Windows > Package Manager。 在 Packag…...

【docker】运行registry

registry简介 Docker registry是docker镜像仓库的服务,用于存储和分发docker镜像。 Docker registry主要特点和功能: 存储docker镜像:提供持久化存储docker镜像的功能,存储镜像的各个layer。 分发镜像:拉取和推送镜像的去中心化存储和分发服务。 支持版本管理:给镜像打标签…...

java八股文面试[Spring]——如何实现一个IOC容器

什么是IOC容器 IOC不是一种技术&#xff0c;只是一种思想&#xff0c;一个重要的面向对象编程的法则&#xff0c;它能指导我们如何设计出松耦合&#xff0c;更优良的程序。传统应用程序都是由我们在类内部主动创建依赖对象&#xff0c;从而导致类与类之间高耦合&#xff0c;难于…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

TJCTF 2025

还以为是天津的。这个比较容易&#xff0c;虽然绕了点弯&#xff0c;可还是把CP AK了&#xff0c;不过我会的别人也会&#xff0c;还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...

ArcPy扩展模块的使用(3)

管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如&#xff0c;可以更新、修复或替换图层数据源&#xff0c;修改图层的符号系统&#xff0c;甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...

用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章

用 Rust 重写 Linux 内核模块实战&#xff1a;迈向安全内核的新篇章 ​​摘要&#xff1a;​​ 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言&#xff0c;受限于 C 语言本身的内存安全和并发安全问题&#xff0c;开发复杂模块极易引入难以…...