校园供水系统智能管理
import pandas as pd
data1=pd.read_excel("C://Users//JJH//Desktop//E//附件_一季度.xlsx")
data2=pd.read_excel("C://Users//JJH//Desktop//E//附件_二季度.xlsx")
data3=pd.read_excel("C://Users//JJH//Desktop//E//附件_三季度.xlsx")
data4=pd.read_excel("C://Users//JJH//Desktop//E//附件_四季度.xlsx")
data1
| 水表名 | 水表号 | 采集时间 | 上次读数 | 当前读数 | 用量 | |
|---|---|---|---|---|---|---|
| 0 | 司法鉴定中心 | 0 | 2019/1/1 00:15:00 | 2157.1 | 2157.1 | 0.0 |
| 1 | 司法鉴定中心 | 0 | 2019/1/1 00:30:00 | 2157.1 | 2157.1 | 0.0 |
| 2 | 司法鉴定中心 | 0 | 2019/1/1 00:45:00 | 2157.1 | 2157.1 | 0.0 |
| 3 | 司法鉴定中心 | 0 | 2019/1/1 01:00:00 | 2157.1 | 2157.1 | 0.0 |
| 4 | 司法鉴定中心 | 0 | 2019/1/1 01:15:00 | 2157.1 | 2157.1 | 0.0 |
| ... | ... | ... | ... | ... | ... | ... |
| 729278 | 物业 | 3030100102 | 2019/3/31 22:45:00 | 50.9 | 50.9 | 0.0 |
| 729279 | 物业 | 3030100102 | 2019/3/31 23:00:00 | 50.9 | 50.9 | 0.0 |
| 729280 | 物业 | 3030100102 | 2019/3/31 23:15:00 | 50.9 | 50.9 | 0.0 |
| 729281 | 物业 | 3030100102 | 2019/3/31 23:30:00 | 50.9 | 50.9 | 0.0 |
| 729282 | 物业 | 3030100102 | 2019/3/31 23:45:00 | 50.9 | 50.9 | 0.0 |
729283 rows × 6 columns
data1.isnull().sum()
水表名 0
水表号 0
采集时间 0
上次读数 0
当前读数 0
用量 0
dtype: int64
data2.isnull().sum()
水表名 0
水表号 0
采集时间 0
上次读数 0
当前读数 0
用量 0
dtype: int64
data3.isnull().sum()
水表名 0
水表号 0
采集时间 0
上次读数 0
当前读数 0
用量 0
dtype: int64
data4.isnull().sum()
水表名 0
水表号 0
采集时间 0
上次读数 0
当前读数 0
用量 0
dtype: int64
import numpy as np
# 合并数据
data1['季度'] = pd.Series(["一季度" for i in range(len(data1.index))])
data2['季度'] = pd.Series(["二季度" for i in range(len(data2.index))])
data3['季度'] = pd.Series(["三季度" for i in range(len(data3.index))])
data4['季度'] = pd.Series(["四季度" for i in range(len(data4.index))])
data1
| 水表名 | 水表号 | 采集时间 | 上次读数 | 当前读数 | 用量 | 季度 | |
|---|---|---|---|---|---|---|---|
| 0 | 司法鉴定中心 | 0 | 2019/1/1 00:15:00 | 2157.1 | 2157.1 | 0.0 | 一季度 |
| 1 | 司法鉴定中心 | 0 | 2019/1/1 00:30:00 | 2157.1 | 2157.1 | 0.0 | 一季度 |
| 2 | 司法鉴定中心 | 0 | 2019/1/1 00:45:00 | 2157.1 | 2157.1 | 0.0 | 一季度 |
| 3 | 司法鉴定中心 | 0 | 2019/1/1 01:00:00 | 2157.1 | 2157.1 | 0.0 | 一季度 |
| 4 | 司法鉴定中心 | 0 | 2019/1/1 01:15:00 | 2157.1 | 2157.1 | 0.0 | 一季度 |
| ... | ... | ... | ... | ... | ... | ... | ... |
| 729278 | 物业 | 3030100102 | 2019/3/31 22:45:00 | 50.9 | 50.9 | 0.0 | 一季度 |
| 729279 | 物业 | 3030100102 | 2019/3/31 23:00:00 | 50.9 | 50.9 | 0.0 | 一季度 |
| 729280 | 物业 | 3030100102 | 2019/3/31 23:15:00 | 50.9 | 50.9 | 0.0 | 一季度 |
| 729281 | 物业 | 3030100102 | 2019/3/31 23:30:00 | 50.9 | 50.9 | 0.0 | 一季度 |
| 729282 | 物业 | 3030100102 | 2019/3/31 23:45:00 | 50.9 | 50.9 | 0.0 | 一季度 |
729283 rows × 7 columns
data = data1.append([data2,data3,data4],ignore_index=True) # 添加合并
data
C:\Users\JJH\AppData\Local\Temp\ipykernel_31264\4019438690.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.data = data1.append([data2,data3,data4],ignore_index=True) # 添加合并
| 水表名 | 水表号 | 采集时间 | 上次读数 | 当前读数 | 用量 | 季度 | |
|---|---|---|---|---|---|---|---|
| 0 | 司法鉴定中心 | 0 | 2019/1/1 00:15:00 | 2157.1 | 2157.1 | 0.0 | 一季度 |
| 1 | 司法鉴定中心 | 0 | 2019/1/1 00:30:00 | 2157.1 | 2157.1 | 0.0 | 一季度 |
| 2 | 司法鉴定中心 | 0 | 2019/1/1 00:45:00 | 2157.1 | 2157.1 | 0.0 | 一季度 |
| 3 | 司法鉴定中心 | 0 | 2019/1/1 01:00:00 | 2157.1 | 2157.1 | 0.0 | 一季度 |
| 4 | 司法鉴定中心 | 0 | 2019/1/1 01:15:00 | 2157.1 | 2157.1 | 0.0 | 一季度 |
| ... | ... | ... | ... | ... | ... | ... | ... |
| 3086783 | 消防 | 3620303200 | 2019/12/31 22:45:00 | 22.0 | 22.0 | 0.0 | 四季度 |
| 3086784 | 消防 | 3620303200 | 2019/12/31 23:00:00 | 22.0 | 22.0 | 0.0 | 四季度 |
| 3086785 | 消防 | 3620303200 | 2019/12/31 23:15:00 | 22.0 | 22.0 | 0.0 | 四季度 |
| 3086786 | 消防 | 3620303200 | 2019/12/31 23:30:00 | 22.0 | 22.0 | 0.0 | 四季度 |
| 3086787 | 消防 | 3620303200 | 2019/12/31 23:45:00 | 22.0 | 22.0 | 0.0 | 四季度 |
3086788 rows × 7 columns
x=data[['水表名','用量','采集时间']]
x
| 水表名 | 用量 | 采集时间 | |
|---|---|---|---|
| 0 | 司法鉴定中心 | 0.0 | 2019/1/1 00:15:00 |
| 1 | 司法鉴定中心 | 0.0 | 2019/1/1 00:30:00 |
| 2 | 司法鉴定中心 | 0.0 | 2019/1/1 00:45:00 |
| 3 | 司法鉴定中心 | 0.0 | 2019/1/1 01:00:00 |
| 4 | 司法鉴定中心 | 0.0 | 2019/1/1 01:15:00 |
| ... | ... | ... | ... |
| 3086783 | 消防 | 0.0 | 2019/12/31 22:45:00 |
| 3086784 | 消防 | 0.0 | 2019/12/31 23:00:00 |
| 3086785 | 消防 | 0.0 | 2019/12/31 23:15:00 |
| 3086786 | 消防 | 0.0 | 2019/12/31 23:30:00 |
| 3086787 | 消防 | 0.0 | 2019/12/31 23:45:00 |
3086788 rows × 3 columns
x1=x[x['水表名']=='消防']
x1
| 水表名 | 用量 | 采集时间 | |
|---|---|---|---|
| 1500912 | 消防 | 0.0 | 2019/4/22 12:15:00 |
| 1500913 | 消防 | 0.0 | 2019/4/22 12:30:00 |
| 1500914 | 消防 | 0.0 | 2019/4/22 12:45:00 |
| 1500915 | 消防 | 0.0 | 2019/4/22 13:00:00 |
| 1500916 | 消防 | 0.0 | 2019/4/22 13:15:00 |
| ... | ... | ... | ... |
| 3086783 | 消防 | 0.0 | 2019/12/31 22:45:00 |
| 3086784 | 消防 | 0.0 | 2019/12/31 23:00:00 |
| 3086785 | 消防 | 0.0 | 2019/12/31 23:15:00 |
| 3086786 | 消防 | 0.0 | 2019/12/31 23:30:00 |
| 3086787 | 消防 | 0.0 | 2019/12/31 23:45:00 |
23984 rows × 3 columns
import matplotlib.pyplot as plt
print(len(x1))
23984
# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov'] # 自定义刻度标签
x = range(23984)# 自定义x轴刻度
num_ticks = 6 # 指定刻度数量
step = len(x) // num_ticks # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)] # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x1['采集时间'],x1['用量'],color='black',linewidth=0.5)
plt.show()

x=data[['水表名','用量','采集时间']]
x
| 水表名 | 用量 | 采集时间 | |
|---|---|---|---|
| 0 | 司法鉴定中心 | 0.0 | 2019/1/1 00:15:00 |
| 1 | 司法鉴定中心 | 0.0 | 2019/1/1 00:30:00 |
| 2 | 司法鉴定中心 | 0.0 | 2019/1/1 00:45:00 |
| 3 | 司法鉴定中心 | 0.0 | 2019/1/1 01:00:00 |
| 4 | 司法鉴定中心 | 0.0 | 2019/1/1 01:15:00 |
| ... | ... | ... | ... |
| 3086783 | 消防 | 0.0 | 2019/12/31 22:45:00 |
| 3086784 | 消防 | 0.0 | 2019/12/31 23:00:00 |
| 3086785 | 消防 | 0.0 | 2019/12/31 23:15:00 |
| 3086786 | 消防 | 0.0 | 2019/12/31 23:30:00 |
| 3086787 | 消防 | 0.0 | 2019/12/31 23:45:00 |
3086788 rows × 3 columns
x2=x[x['水表名']=='XXX第一学生宿舍']
x2
| 水表名 | 用量 | 采集时间 | |
|---|---|---|---|
| 220372 | XXX第一学生宿舍 | 0.12 | 2019/1/1 00:15:00 |
| 220373 | XXX第一学生宿舍 | 0.12 | 2019/1/1 00:30:00 |
| 220374 | XXX第一学生宿舍 | 0.12 | 2019/1/1 00:45:00 |
| 220375 | XXX第一学生宿舍 | 0.12 | 2019/1/1 01:00:00 |
| 220376 | XXX第一学生宿舍 | 0.12 | 2019/1/1 01:15:00 |
| ... | ... | ... | ... |
| 2533541 | XXX第一学生宿舍 | 0.40 | 2019/12/31 22:45:00 |
| 2533542 | XXX第一学生宿舍 | 0.40 | 2019/12/31 23:00:00 |
| 2533543 | XXX第一学生宿舍 | 0.50 | 2019/12/31 23:15:00 |
| 2533544 | XXX第一学生宿舍 | 0.50 | 2019/12/31 23:30:00 |
| 2533545 | XXX第一学生宿舍 | 0.50 | 2019/12/31 23:45:00 |
35039 rows × 3 columns
# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov'] # 自定义刻度标签# 自定义x轴刻度
num_ticks = 6 # 指定刻度数量
step = len(x2) // num_ticks # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)] # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x2['采集时间'],x2['用量'],color='black',linewidth=0.5)
plt.show()

x=data[['水表名','用量','采集时间']]
x3=x[x['水表名']=='留学生楼(新)']
# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov'] # 自定义刻度标签# 自定义x轴刻度
num_ticks = 6 # 指定刻度数量
step = len(x3) // num_ticks # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)] # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x3['采集时间'],x3['用量'],color='black',linewidth=0.3)
plt.show()

x=data[['水表名','用量','采集时间']]
x4=x[x['水表名']=='XXX教学大楼总表']
# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov'] # 自定义刻度标签# 自定义x轴刻度
num_ticks = 6 # 指定刻度数量
step = len(x4) // num_ticks # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)] # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x4['采集时间'],x4['用量'],color='black',linewidth=0.3)
plt.show()

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei'] # 指定字体为SimHei
labels = ['消防', '留学生楼(新)', 'XXX教学大楼总表']plt.boxplot([x1['用量'],x3['用量'],x4['用量']])plt.xticks(range(1, 4), labels)
# 显示图形
plt.show()

相关文章:
校园供水系统智能管理
import pandas as pd data1pd.read_excel("C://Users//JJH//Desktop//E//附件_一季度.xlsx") data2pd.read_excel("C://Users//JJH//Desktop//E//附件_二季度.xlsx") data3pd.read_excel("C://Users//JJH//Desktop//E//附件_三季度.xlsx") data4…...
Flask-SocketIO和Flask-Login联合开发socketio权限系统
设置 Flask, Flask-SocketIO, Flask-Login: 首先,确保安装了必要的库: pip install Flask Flask-SocketIO Flask-Login基础设置: from flask import Flask, render_template, redirect, url_for, request from flask_socketio import SocketIO, emit from flask_…...
航空电子设备中的TSN通讯架构—直升机
前言 以太网正在迅速取代传统网络,成为航空电子设备和任务系统的核心高速网络。本文提出了以太网时间敏感网络(TSN)在航空电子设备上应用的技术优势问题。在实际应用中,TSN已成为一个具有丰富的机制和协议的工具箱,可满足与时间和可靠性相关…...
elment-ui中使用el-steps案例
el-steps案例 样式 代码 <div class"active-box"><div class"active-title">请完善</div><el-steps :active"active" finish-status"success" align-center><el-step title"第一步" /><…...
FPGA解析串口指令控制spi flash完成连续写、读、擦除数据
前言 最近在收拾抽屉时找到一个某宝的spi flash模块,如下图所示,我就想用能不能串口来读写flash,大致过程就是,串口向fpga发送一条指令,fpga解析出指令控制flah,这个指令协议目前就是: 55 AA …...
msvcp120.dll丢失的解决方法,分享三种快速修复的方法
今天,我将和大家分享一个关于电脑问题的解决方法——msvcp120.dll丢失的解决方法。希望对大家有所帮助。 首先,让我们来了解一下msvcp120.dll文件。msvcp120.dll是Microsoft Visual C 2010 Redistributable Package的一个组件,它包含了一些运…...
mysql 8.0 窗口函数 之 序号函数 与 sql server 序号函数 一样
sql server 序号函数 序号函数 ROW_NUMBER() 顺序排序RANK() 并列排序,会跳过重复的序号,比如序号为1,1,3DENSE_RANK() 并列排序,不会跳过重复的序号,比如 序号为 1,1,2 语法结构…...
fastgpt构建镜像
1.把client目录复制到服务器 .next和node_modules文件夹不用上传到服务器 在服务器目录运行 docker build -t fastgpt:1.0.3 . 构建服务 再运行 docker ps 就可以看到容器了...
Git笔记--分支常用命令
目录 1--git branch -v 2--git branch 3--git checkout 4--git merge 1--git branch -v git branch -v git branch -v 用于查看分支版本; 2--git branch git branch xxxxx # xxxxx表示分支名 git branch 用于创建分支; 3--git checkout git check…...
常见设计模式学习+面试总结
一 设计模式简介 二 面试总结 1 什么是单例模式?都有哪些地方用到单例? 内存中只会创建且仅创建一次对象的设计模式,保证一个类只有一个实例,并且提供一个访问该全局访问点。 应用场景: 网站的计数器,一般…...
sql解决取多个截至每个月的数据
问题:需要查询1月、1-2月、1-3月… 1-12月,分区间的累计数据,在同一个sql语句里面实现。 多个分开查询效率不高,并且数据手动合并麻烦。 with t1 as ( SELECT *,CASE WHEN insutype 390 THEN 居民 ELSE 职工 END 人员类别,SUBST…...
数据采集:selenium 获取 CDN 厂家各省市节点 IP
写在前面 工作需要遇到,简单整理理解不足小伙伴帮忙指正 对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对…...
【el-tree】树形组件图标的自定义
饿了么树形组件的图标自定义 默认样式: 可以看到el-tree组件左侧自带展开与收起图标,咱们可以把它隐藏:: .groupList {::v-deep .el-tree-node { .el-icon-caret-right {display: none;} } } 我的全部代码 <div class"groupList"><el…...
UltralSO软碟通制作Linux系统盘
第一步: 下载镜像 阿里云下载地址:https://mirrors.aliyun.com/centos-vault/ 按照需求选择系统版本,我这要求安装CentOS7.5的系统,我以CentOS7.5为例 第二步: 下载UltralSO软件 官网下载地址:https://cn.…...
yolov8训练心得 持续更新
目录 优化器 lion优化器,学习率0.0001,训练效果: 学习率衰减 600个batch衰减0.7,发现效果较好...
超越界限:大模型应用领域扩展,探索文本分类、文本匹配、信息抽取和性格测试等多领域应用
超越界限:大模型应用领域扩展,探索文本分类、文本匹配、信息抽取和性格测试等多领域应用 随着 ChatGPT 和 GPT-4 等强大生成模型出现,自然语言处理任务方式正在逐步发生改变。鉴于大模型强大的任务处理能力,未来我们或将不再为每…...
Compose - 基本使用
一、概念 1.1 Compose优势 由一个个可以组合的Composable函数拼成界面,方便维护和复用。布局模型不允许多次测量,提升了性能。Compose可以和View互操作(相互包含对方)。 1.2 声明式UI APP展示的数据绝大多数不是静态数据而是会…...
Unity3D Pico VR 手势识别
本文章使用的 Unity3D版本: 2021.3.6 , Pico SDK 230 ,Pico OS v.5.7.1 硬件Pico 4 Pico SDK可以去Pico官网下载SDK 导入SDK 第一步:创建Unity3D项目 第二步:导入 PICO Unity Integration SDK 选择 Windows > Package Manager。 在 Packag…...
【docker】运行registry
registry简介 Docker registry是docker镜像仓库的服务,用于存储和分发docker镜像。 Docker registry主要特点和功能: 存储docker镜像:提供持久化存储docker镜像的功能,存储镜像的各个layer。 分发镜像:拉取和推送镜像的去中心化存储和分发服务。 支持版本管理:给镜像打标签…...
java八股文面试[Spring]——如何实现一个IOC容器
什么是IOC容器 IOC不是一种技术,只是一种思想,一个重要的面向对象编程的法则,它能指导我们如何设计出松耦合,更优良的程序。传统应用程序都是由我们在类内部主动创建依赖对象,从而导致类与类之间高耦合,难于…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
