当前位置: 首页 > news >正文

jpa里IdentityGenerator和IncrementGenerator的区别

IdentityGeneratorIncrementGenerator 的区别

IdentityGeneratorIncrementGenerator 都是 JPA 中可用的主键生成策略(GenerationType)之一。它们的区别如下:

  1. IdentityGenerator: IDENTITY 主键生成策略利用数据库自动生成的主键。在使用该策略时,插入新实体时,会立即执行 INSERT 操作,并返回由数据库生成的主键值。常见的数据库(如 MySQL、SQL Server、PostgreSQL)支持自动增长或自动递增列来实现 IDENTITY 策略。

  2. IncrementGenerator: SEQUENCETABLE 主键生成策略由应用程序负责生成唯一的主键值。在使用该策略时,插入新实体时,并不会立即执行 INSERT 操作,而是先使用特定的机制生成一个唯一的主键值,然后再执行 INSERT 操作。具体的生成机制可以是数据库的序列(sequence)、特定的表或其他自定义逻辑。

综上所述,两种主键生成策略的区别在于:

  • IdentityGenerator 利用数据库自动生成的主键值,通常使用数据库的自增长或自动递增列。
  • IncrementGenerator 由应用程序负责生成唯一的主键值,可以使用数据库的序列、特定的表或自定义的逻辑。

要选择适合程序的主键生成策略,需要考虑数据库的支持程度、性能需求和应用程序的唯一性要求等因素。

相关文章:

jpa里IdentityGenerator和IncrementGenerator的区别

IdentityGenerator 和 IncrementGenerator 的区别 IdentityGenerator 和 IncrementGenerator 都是 JPA 中可用的主键生成策略(GenerationType)之一。它们的区别如下: IdentityGenerator: IDENTITY 主键生成策略利用数据库自动生成的主键。在…...

基于element UI 实现 table 列 拖拽

问题描述 在开发中遇到一个需求,即实现table列的拖拽,但是调研发现,大部分是基于sorttable.js这个包实现的,但是通过实际应用,发现sorttable.js用在操作element table 组件中并不是很舒服,总会莫名其妙的冒…...

(GPT、GEE)遥感云大数据、洪涝灾害监测、红树林遥感制图、河道轮廓监测、洪涝灾害监测、GRACE重力卫星、源遥感影像

近年来遥感技术得到了突飞猛进的发展,航天、航空、临近空间等多遥感平台不断增加,数据的空间、时间、光谱分辨率不断提高,数据量猛增,遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇&#xf…...

vue中实现将页面或者div内容导出为pdf格式

将Vue单页面转成pdf并下载 步骤1:下载对应的库 npm install html2canvas;npm install jspdf --save 步骤2:创建一个htmlToPdf.js的js文件, 然后在main.js中全局引用一下,编写如下代码: // htmlToPdf.js // 导出页面为PDF格式 …...

Ubuntu 配置国内源

配置国内源 因为众所周知的原因,国外的很多网站在国内是访问不了或者访问极慢的,这其中就包括了Ubuntu的官方源。 所以,想要流畅的使用apt安装应用,就需要配置国内源的镜像。 市面上Ubuntu的国内镜像源非常多,比较有…...

分布式核心知识

文章目录 前言一、分布式中的远程调用1.1RESTful接口1.2RPC协议1.3区别与联系 二、分布式中的CAP原理 前言 关于分布式核心知识详解 一、分布式中的远程调用 在微服务架构中,通常存在多个服务之间的远程调用的需求。远程调用通常包含两个部分:序列化和通…...

【JMeter】常用线程组设置策略

目录 一、前言 二、单场景基准测试 1.介绍 2.线程组设计 3.测试结果 三、单场景并发测试 1.介绍 2.线程组设计 3.测试结果 四、单场景容量/爬坡测试 1.介绍 2.线程组设计 3.测试结果 五、混合场景容量/并发测试 1.介绍 六、稳定性测试 1.介绍 2.线程组设计 …...

【数据结构】回溯算法公式化解题 leetcode经典题目带刷:全排列、组合、子集

目录 回溯算法一、什么是回溯算法1、基本思想:2、一般步骤: 二、题目带练1、全排列2、组合3、子集 三、公式总结 回溯算法 一、什么是回溯算法 回溯算法(Backtracking Algorithm)是一种解决组合问题、排列问题、选择问题等一类问…...

WPF基础入门-Class3-WPF数据模板

WPF基础入门 Class3&#xff1a;WPF数据模板 1、先在cs文件中定义一些数据 public partial class Class_4 : Window{public Class_4(){InitializeComponent();List<Color> test new List<Color>();test.Add(new Color() { Code "Yellow", Name &qu…...

js将搜索的关键字加颜色

js将搜索的关键字加颜色 使用正则匹配关键字并加入span标签&#xff0c;页面渲染时使用v-html渲染即可 // 文本框内容 let searchCont 测试;const reg new RegExp((${searchCont.value}), g); let data 图片保存测试A; data data.replace(reg, <span style"color:…...

Docker安装Oracle数据库打开、链接速度很慢

问题&#xff1a; 使用Docker安装Oracle数据库打开、链接速度很慢&#xff0c;明显的在在转圈严重影响效率。 解决&#xff1a; 排查到DNS时&#xff0c;发现宿主机DNS配置清空后&#xff0c;通过JDBC连接目标Oracle数据库速度很快 进入容器中进行测试&#xff0c;发现清空DNS…...

学生分班查询系统的创建与使用指南

开学季&#xff0c;负责分班工作的老师们又面临一个难题&#xff1a;如何公布分班结果&#xff1f;将结果放在学校官网上可能会让很多无关人员看到&#xff0c;而不放则会导致家长们纷纷打电话来询问。那么&#xff0c;有没有一种方法可以让家长们自行查看分班结果呢&#xff1…...

全套解决方案:基于pytorch、transformers的中文NLP训练框架,支持大模型训练和文本生成,快速上手,海量训练数据!

全套解决方案&#xff1a;基于pytorch、transformers的中文NLP训练框架&#xff0c;支持大模型训练和文本生成&#xff0c;快速上手&#xff0c;海量训练数据&#xff01; 1.简介 目标&#xff1a;基于pytorch、transformers做中文领域的nlp开箱即用的训练框架&#xff0c;提…...

ffmpeg

文章目录 libavcodec实现 libavformat实现libavfilter实现 libswscale实现对比libavfilter图像处理libswscale vs libyuvlibavutil 命令行工具ffmpeg例子 ffprobe例子 FFmpeg 是一个由 C 语言编写的开源跨平台音视频处理工具集&#xff0c;它具有模块化的架构。下面是 FFmpeg 的…...

CH03_代码的坏味道(下)

循环语句&#xff08;Loops&#xff09; 从最早的编程语言开始&#xff0c;循环就一直是程序设计的核心要素。如今&#xff0c;函数作为一等公民已经得到了广泛的支持&#xff0c;因此我们可以使用以管道取代循环&#xff08;231&#xff09;管道操作&#xff08;如filter和ma…...

journal日志导致服务器磁盘满

背景 ubuntu 18.04服务器磁盘突然100% 一查/var/log/journal目录占了14G 清理 要清理 journal 日志&#xff0c;可以使用以下步骤&#xff1a; 运行以下命令来查看 journal 日志的使用情况&#xff1a; journalctl --disk-usage这将显示 journal 日志的当前使用情况&#x…...

“Go程序员面试笔试宝典”复习便签

一.逃逸分析 1.1逃逸分析是什么&#xff1f; 逃逸分析&#xff0c;主要是Go编译器用来决定变量分配在堆或者栈的手段。 区分于C/C手动管理内存分配&#xff0c;Go将这些工作交给了编译器。 1.2逃逸分析有什么作用 解放程序员。程序员不需要手动指定指针分配内存。 灵活的…...

数组的度(指数组里任一元素出现频数的最大值)

题目&#xff1a; 给定一个非空且只包含非负数的整数数组 nums&#xff0c;数组的 度 的定义是指数组里任一元素出现频数的最大值。 你的任务是在 nums 中找到与 nums 拥有相同大小的度的最短连续子数组&#xff0c;返回其长度。 示例 1&#xff1a; 输入&#xff1a;nums …...

scala array类型参数

在Scala中&#xff0c;数组&#xff08;Array&#xff09;是一种用于存储相同类型元素的数据结构。数组可以用于保存基本数据类型和自定义数据类型的元素。当定义数组类型参数时&#xff0c;您通常是在函数、类或方法签名中使用它们。以下是一些有关Scala数组类型参数的示例&am…...

构建 NodeJS 影院预订微服务并使用 docker 部署(03/4)

一、说明 构建一个微服务的电影网站&#xff0c;需要Docker、NodeJS、MongoDB&#xff0c;这样的案例您见过吗&#xff1f;如果对此有兴趣&#xff0c;您就继续往下看吧。 你好社区&#xff0c;这是&#x1f3f0;“构建 NodeJS 影院微服务”系列的第三篇文章。本系列文章演示了…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...