ACL2023 Prompt 相关文章速通 Part 1
Accepted Papers
link: ACL2023 main conference accepted papers
文章目录
- Accepted Papers
- Prompter: Zero-shot Adaptive Prefixes for Dialogue State Tracking Domain Adaptation
- Query Refinement Prompts for Closed-Book Long-Form QA
- Prompting Language Models for Linguistic Structure
- Zero-shot Approach to Overcome Perturbation Sensitivity of Prompts
- PMAES: Prompt-mapping Contrastive Learning for Cross-prompt Automated Essay Scoring
- Exploring Lottery Prompts for Pre-trained Language Models
- Marked Personas: Using Natural Language Prompts to Measure Stereotypes in Language Models
- MultiTool-CoT: GPT-3 Can Use Multiple External Tools with Chain of Thought Prompting
- END
Prompter: Zero-shot Adaptive Prefixes for Dialogue State Tracking Domain Adaptation
将 soft prompt 以及 Hyper Prompt 架构用在了对话情景追踪(DST)任务上,详见这篇博客。
Query Refinement Prompts for Closed-Book Long-Form QA
文章链接
又是一个没见过的任务,Closed-Book Long-Form QA,字面意思就是闭卷长QA。显而易见有两个约束,一个是闭卷,也就是LLM只能基于预训练的知识做回答;另一个是长,这里指QA的A即回答比较长。这个任务的实例由作者给出:

这个任务的问题就比较笼统,答案是可以说很多的,作者就将其总结为多角度回答,具体来讲就是回答一个这样的问题分为3步:
- 将这个笼统的大问题拆分成几个不同方面的子问题;
- 回答不同的子问题;
- 将子问题的答案组织成一个连贯的长回答。
作者也是受CoT的启发,将“拆分子问题”这个过程显式地加在输出里,让LLM产生更好的输出。实际上做法很经典,用几个人工的demo做few-shot,从demo库里面按照相似度找跟当前问题最相似的demo做few-shot。
思路是CoT的,应用在了比较小众的一个问题上。
Prompting Language Models for Linguistic Structure
文章链接

任务是给PLM样例让PLM给句子的每个单词打词性标签,从而研究PLM是否理解的语言,还是只是单纯的缝合训练数据。结论是PLM的语言能力应该是比单纯的记忆训练数据高的。
Zero-shot Approach to Overcome Perturbation Sensitivity of Prompts
文章链接
给一个base prompt,该工作生成一个更好的prompt,同时保证zero-shot,即不使用验证集来评估生成的prompt的好坏,而是用new metric来选出更好的prompt。这个setting还是挺好的,确实很多prompt generate的工作需要验证集来评估生成的prompt的好坏从而筛选。

然而细细观之,作者的做法比较复古,作者说主要是针对低资源场景的,因此模型也只用了BERT,任务也仅考虑了情感分析任务。
首先生成Prompt的方式是类似GrIPS的操作,在单词层面对base prompt进行修改,分为换位置(prompt放在input前面/后面)、加连词(prompt在前面时用because连接,放在后面时用so连接)以及用BERT paraphrase某个token。
打分是重头戏的部分,作者的打分基于一个假设:好的prompt应该对一些“关键词”敏感,比如说“This film is great.”的情感是positive, 那在这个“great”变成反义词,如“terrible”的时候,情感就该反转变成negative。类似地,变成同义词这个情感就该不变。由此,作者就通过prompt对关键词的敏感程度来评判prompt的好坏,而不需要知道真正的label是什么。
看下来感觉这个操作类似于数据增强,作者的这个想法还是很有意思的,但应用范围目前还只局限于二分类任务。同时我认为带有“关键词”的输入本身就比较简单,都能找到关键词了那么其实离正确答案也不远了。但作者的立意比较新,而且基于BERT,主打low resource。
PMAES: Prompt-mapping Contrastive Learning for Cross-prompt Automated Essay Scoring
文章链接
这篇好像跟prompt engineer的prompt不是一个意思啊,是为文章进行打分的,不知道essay的prompt是个什么东东?
Exploring Lottery Prompts for Pre-trained Language Models
文章链接,简洁但有效的搜索并集成prompt的方法,详见这篇博客
Marked Personas: Using Natural Language Prompts to Measure Stereotypes in Language Models
文章链接
看名字就知道是偏人文的,主要考察LLM对人类群体的刻板印象,大体上的思路是让LLM生成对某个种族或者别的群体的描述,分析其中的情感,就不细说了。
MultiTool-CoT: GPT-3 Can Use Multiple External Tools with Chain of Thought Prompting
文章链接

用Few-shot-CoT的方式教会LLM使用外部工具,样例中有一些特别的token,在LLM输出这些token的时候就会调用外部工具,比如计算器和化学反应工具,弥补LLM的专业技能。方法不复杂,作者称他们是SOTA。
END
暂时先更到这里,剩下的文章以后再看。
相关文章:
ACL2023 Prompt 相关文章速通 Part 1
Accepted Papers link: ACL2023 main conference accepted papers 文章目录 Accepted PapersPrompter: Zero-shot Adaptive Prefixes for Dialogue State Tracking Domain AdaptationQuery Refinement Prompts for Closed-Book Long-Form QAPrompting Language Models for Lin…...
“R语言+遥感“水环境综合评价方法
详情点击链接:"R语言遥感"水环境综合评价方法 一:R语言 1.1 R语言特点(R语言) 1.2 安装R(R语言) 1.3 安装RStudio(R语言) (1)下载地址 &…...
数据结构之哈希
哈希 1. 哈希概念2. 哈希冲突3. 哈希冲突解决3.1 哈希表的闭散列3.2 哈希表的开散列 2. 哈希的应用2.1 位图2.2 布隆过滤器 哈希(Hash)是一种将任意长度的二进制明文映射为较短的二进制串的算法。它是一种重要的存储方式,也是一种常见的检索方…...
可视化绘图技巧100篇基础篇(七)-散点图(一)
目录 前言 适用场景 图例 普通散点图与可视化 曲线图 气泡图...
关于什么是框架
框架(Framework)是一个框子——指其约束性,也是一个架子——指其支撑性。 IT语境中的框架,特指为解决一个开放性问题而设计的具有一定 性的支撑结构。在此结构上约束可以根据具体问题扩展、安插更多的组成部分,从而更迅…...
iOS开发Swift-集合类型
集合基本类型:数组 Array (有序), 集合 Set (无序不重复), 字典 Dictionary (无序键值对) 1.数组 Arrays (1)数组的表示 Array<Element> [Element](2)创建空数组 var someInts: [Int] [] someInts.count //数组长度(3)带值数组 var…...
【keepalived双机热备与 lvs(DR)】
目录 一、概述 1.简介 2.原理 3.作用 二、安装 1.配置文件 2.配置项 三、功能模块 1.core 2.vrrp 3.check 四、配置双机热备 1.master 2.backup 五、验证 1.ping验证 2.服务验证 六、双机热备的脑裂现象 七、keepalivedlvs(DR) 1.作…...
C++笔记之静态成员函数可以在类外部访问私有构造函数吗?
C笔记之静态成员函数可以在类外部访问私有构造函数吗? code review! 静态成员函数可以在类外部访问私有构造函数。在C中,访问控制是在编译时执行的,而不是在运行时执行的。这意味着静态成员函数在编译时是与类本身相关联的,而不…...
最新SQLMap进阶技术
SQLMap进阶:参数讲解 (1)–level 5:探测等级。 参数“–level 5”指需要执行的测试等级,一共有5个等级(1~5级),可不加“level”,默认是1级。可以在xml/payloads.xml中看…...
【BurpSuite常用功能介绍】
BurpSuite的使用 1.运行BurpSuite 2.代理设置 打开软件后,我们第一件事就应该去调试软件和浏览器的代理,让BURP能够正常工作抓包 proxy--options,我端口默认使用8080 然后我们打开一个浏览器,进入代理设置 (注意一点࿰…...
Leetcode 108. 将有序数组转换为二叉搜索树
108. 将有序数组转换为二叉搜索树 分析 给定一个有序数组,要求转换为二叉搜索树。 数组是有序的,并且要求二叉树。 这里看到数组是有序的,马上想到二分,但是又不需要完全二分 实现。 再复习二叉搜索树的结构特点: 左…...
小匠物联联合亚马逊云助力企业数智化出海
如何让家电企业出海产品数智化之路走上康庄大道?8月25日,亚马逊云科技[创新成长企业专列]这趟上云快车将开往宁波站,助力宁波的制造、软件等企业扬帆起航!现场举办“亚马逊云科技助力企业出海数智沙龙”,小匠物联受邀出席。 会议现…...
(五)k8s实战-配置管理
一、ConfigMap 使用 kubectl create configmap -h 查看示例,构建 configmap 对象 1) 基于文件夹,加载文件夹下所有配置文件,创建 kubectl create configmap <configmapName> --from-file<dirPath>2) 指定配置文件,创…...
GPT---1234
GPT:《Improving Language Understanding by Generative Pre-Training》 下载地址:https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdfhttps://cdn.openai.com/research-covers/language-unsupervised/language_understa…...
计算机竞赛 基于大数据的时间序列股价预测分析与可视化 - lstm
文章目录 1 前言2 时间序列的由来2.1 四种模型的名称: 3 数据预览4 理论公式4.1 协方差4.2 相关系数4.3 scikit-learn计算相关性 5 金融数据的时序分析5.1 数据概况5.2 序列变化情况计算 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 &…...
python进行数据分析:数据预处理
六大数据类型 见python基本功 import numpy as np import pandas as pd数据预处理 缺失值处理 float_data pd.Series([1.2, -3.5, np.nan, 0]) float_data0 1.2 1 -3.5 2 NaN 3 0.0 dtype: float64查看缺失值 float_data.isna()0 False 1 …...
百度Apollo:引领自动驾驶技术的创新与突破
文章目录 前言一、技术创新二、开放合作三、生态建设四、安全可靠性总结 前言 随着科技的迅猛发展,自动驾驶技术正成为未来交通领域的重要发展方向。在这个领域中,百度Apollo作为中国领先的自动驾驶平台,以其卓越的创新能力和开放合作精神&a…...
Python爬虫 异步、缓存技巧
在进行大规模数据抓取时,Python爬虫的速度和效率是至关重要的。本文将介绍如何通过异步请求、缓存和代理池等技巧来优化Python爬虫的速度和性能。我们提供了实用的方案和代码示例,帮助你加速数据抓取过程,提高爬虫的效率。 使用异步请求、缓…...
YOLOv5屏蔽区域检测(选择区域检测)
YOLOv5屏蔽区域检测以及选择区域检测 前期准备labelme选择mask区域 代码改动 前期准备 思路就是通过一个mask掩膜,对我们想要屏蔽或者选择的区域进行遮挡处理,在推理的时候,将有mask掩膜的图像输入,将最后的结果显示在原始图像上…...
记录一次presto sql执行报错 Error executing query的解决办法
在执行presto sql 时报错截图如下: 查看后台执行报错日志: java.sql.SQLException: Error executing query at com.facebook.presto.jdbc.PrestoStatement.internalExecute(PrestoStatement.java:307) at com.facebook.presto.jdbc.PrestoStatement.exe…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
