clickhouse-压测
一、数据集准备
数据集可以使用官网数据集,也可以用ssb-dbgen来准备
1.准备数据
这里最后生成表的数据行数为60亿行,数据量为300G左右
git clone https://github.com/vadimtk/ssb-dbgen.git
cd ssb-dbgen/
make
1.1 生成数据
# -s 指生成多少G的数据
$ ./dbgen -s 40 -T c
$ ./dbgen -s 40 -T l
$ ./dbgen -s 40 -T p
$ ./dbgen -s 40 -T s
1.2 创建表
CREATE TABLE customer
(C_CUSTKEY UInt32,C_NAME String,C_ADDRESS String,C_CITY LowCardinality(String),C_NATION LowCardinality(String),C_REGION LowCardinality(String),C_PHONE String,C_MKTSEGMENT LowCardinality(String)
)
ENGINE = MergeTree ORDER BY (C_CUSTKEY);CREATE TABLE lineorder
(LO_ORDERKEY UInt32,LO_LINENUMBER UInt8,LO_CUSTKEY UInt32,LO_PARTKEY UInt32,LO_SUPPKEY UInt32,LO_ORDERDATE Date,LO_ORDERPRIORITY LowCardinality(String),LO_SHIPPRIORITY UInt8,LO_QUANTITY UInt8,LO_EXTENDEDPRICE UInt32,LO_ORDTOTALPRICE UInt32,LO_DISCOUNT UInt8,LO_REVENUE UInt32,LO_SUPPLYCOST UInt32,LO_TAX UInt8,LO_COMMITDATE Date,LO_SHIPMODE LowCardinality(String)
)
ENGINE = MergeTree PARTITION BY toYear(LO_ORDERDATE) ORDER BY (LO_ORDERDATE, LO_ORDERKEY);CREATE TABLE part
(P_PARTKEY UInt32,P_NAME String,P_MFGR LowCardinality(String),P_CATEGORY LowCardinality(String),P_BRAND LowCardinality(String),P_COLOR LowCardinality(String),P_TYPE LowCardinality(String),P_SIZE UInt8,P_CONTAINER LowCardinality(String)
)
ENGINE = MergeTree ORDER BY P_PARTKEY;CREATE TABLE supplier
(S_SUPPKEY UInt32,S_NAME String,S_ADDRESS String,S_CITY LowCardinality(String),S_NATION LowCardinality(String),S_REGION LowCardinality(String),S_PHONE String
)
ENGINE = MergeTree ORDER BY S_SUPPKEY;
1.3 导入数据
$ clickhouse-client --query "INSERT INTO db_bench.customer FORMAT CSV" < customer.tbl
$ clickhouse-client --query "INSERT INTO db_bench.part FORMAT CSV" < part.tbl
$ clickhouse-client --query "INSERT INTO db_bench.supplier FORMAT CSV" < supplier.tbl
$ clickhouse-client --query "INSERT INTO db_bench.lineorder FORMAT CSV" < lineorder.tbl
1.4 join表
这个操作耗时两个小时,占用内存为29G
# 因为这个操作比较耗费内存,所以要事先设置好内存限制
SET max_memory_usage = 30000000000;CREATE TABLE lineorder_flat
ENGINE = MergeTree ORDER BY (LO_ORDERDATE, LO_ORDERKEY)
AS SELECTl.LO_ORDERKEY AS LO_ORDERKEY,l.LO_LINENUMBER AS LO_LINENUMBER,l.LO_CUSTKEY AS LO_CUSTKEY,l.LO_PARTKEY AS LO_PARTKEY,l.LO_SUPPKEY AS LO_SUPPKEY,l.LO_ORDERDATE AS LO_ORDERDATE,l.LO_ORDERPRIORITY AS LO_ORDERPRIORITY,l.LO_SHIPPRIORITY AS LO_SHIPPRIORITY,l.LO_QUANTITY AS LO_QUANTITY,l.LO_EXTENDEDPRICE AS LO_EXTENDEDPRICE,l.LO_ORDTOTALPRICE AS LO_ORDTOTALPRICE,l.LO_DISCOUNT AS LO_DISCOUNT,l.LO_REVENUE AS LO_REVENUE,l.LO_SUPPLYCOST AS LO_SUPPLYCOST,l.LO_TAX AS LO_TAX,l.LO_COMMITDATE AS LO_COMMITDATE,l.LO_SHIPMODE AS LO_SHIPMODE,c.C_NAME AS C_NAME,c.C_ADDRESS AS C_ADDRESS,c.C_CITY AS C_CITY,c.C_NATION AS C_NATION,c.C_REGION AS C_REGION,c.C_PHONE AS C_PHONE,c.C_MKTSEGMENT AS C_MKTSEGMENT,s.S_NAME AS S_NAME,s.S_ADDRESS AS S_ADDRESS,s.S_CITY AS S_CITY,s.S_NATION AS S_NATION,s.S_REGION AS S_REGION,s.S_PHONE AS S_PHONE,p.P_NAME AS P_NAME,p.P_MFGR AS P_MFGR,p.P_CATEGORY AS P_CATEGORY,p.P_BRAND AS P_BRAND,p.P_COLOR AS P_COLOR,p.P_TYPE AS P_TYPE,p.P_SIZE AS P_SIZE,p.P_CONTAINER AS P_CONTAINER
FROM lineorder AS l
INNER JOIN customer AS c ON c.C_CUSTKEY = l.LO_CUSTKEY
INNER JOIN supplier AS s ON s.S_SUPPKEY = l.LO_SUPPKEY
INNER JOIN part AS p ON p.P_PARTKEY = l.LO_PARTKEY;
二、基准测试
1.benchmark的使用
1.1 基本用法
# 以下几种写法都可以
$ clickhouse-benchmark --query ["single query"] [keys]
$ echo "single query" | clickhouse-benchmark [keys]
$ clickhouse-benchmark [keys] <<< "single query"
clickhouse-benchmark [keys] < queries_file;
# 比较两个clickhouse性能
$ echo "SELECT * FROM system.numbers LIMIT 10000000 OFFSET 10000000" | clickhouse-benchmark --host=localhost --port=9001 --host=localhost --port=9000 -i 10
1.2 参数详解
--query=QUERY — 要执行的查询。 如果未传递此参数,clickhouse-benchmark 将从标准输入读取查询。
-c N, --concurrency=N — clickhouse-benchmark 同时发送的查询数。 默认值:1。
-d N, --delay=N — 中间报告之间的间隔(以秒为单位)(以禁用报告集 0)。 默认值:1。
-h HOST, --host=HOST — 服务器主机。 默认值:本地主机。 对于比较模式,您可以使用多个 -h 键。
-p N, --port=N — 服务器端口。 默认值:9000。对于比较模式,您可以使用多个 -p 键。
-i N, --iterations=N — 查询总数。 默认值:0(永远重复)。
-r, --randomize — 如果有多个输入查询,则查询执行的随机顺序。
-s, --secure — 使用 TLS 连接。
-t N, --timelimit=N — 时间限制(以秒为单位)。 当达到指定的时间限制时,clickhouse-benchmark 将停止发送查询。 默认值:0(时间限制禁用)。
--confidence=N — T 检验的置信度。 可能的值:0 (80%)、1 (90%)、2 (95%)、3 (98%)、4 (99%)、5 (99.5%)。 默认值:5。在比较模式下,clickhouse-benchmark 执行独立双样本学生 t 检验,以确定两个分布在所选置信水平下是否没有差异。
--cumulative — 打印累积数据而不是每个间隔的数据。
--database=DATABASE_NAME — ClickHouse 数据库名称。 默认值:默认。
--json=FILEPATH — JSON 输出。 设置密钥后,clickhouse-benchmark 会将报告输出到指定的 JSON 文件。
--user=USERNAME — ClickHouse 用户名。 默认值:默认。
--password=PSWD — ClickHouse 用户密码。 默认值:空字符串。
--stacktrace — 堆栈跟踪输出。 设置密钥后,clickhouse-bencmark 会输出异常的堆栈跟踪。
--stage=WORD — 服务器上的查询处理阶段。 ClickHouse 在指定阶段停止查询处理并向 clickhouse-benchmark 返回答案。 可能的值:complete、fetch_columns、with_mergeable_state。 默认值:完整。
--help — 显示帮助消息。
如果要对查询应用某些设置,请将它们作为键传递 --<session setting name>= SETTING_VALUE。 例如,--max_memory_usage=1048576。
1.3 结果分析
# 执行的查询数:字段中的查询数。
Queries executed: 72 (1800.000%).
# ClickHouse 服务器的端点。
# queries:已处理查询的数量。
# QPS:在 --delay 参数指定的时间段内服务器每秒执行的查询数量。
# RPS:在 --delay 参数指定的时间段内服务器每秒读取的行数。
# MiB/s:在 --delay 参数中指定的时间段内,服务器每秒读取多少兆字节。
# result RPS:在 --delay 参数中指定的时间段内,服务器每秒将多少行放入查询结果中。
# result MiB/s。 在 --delay 参数指定的时间段内,服务器每秒向查询结果放置多少兆字节。localhost:9000, queries 2, QPS: 0.156, RPS: 432704682.870, MiB/s: 1370.478, result RPS: 2.185, result MiB/s: 0.000.
# 查询执行时间的百分位数。
0.000% 0.217 sec.
10.000% 0.217 sec.
20.000% 0.217 sec.
30.000% 0.217 sec.
40.000% 0.217 sec.
50.000% 12.594 sec.
60.000% 12.594 sec.
70.000% 12.594 sec.
80.000% 12.594 sec.
90.000% 12.594 sec.
95.000% 12.594 sec.
99.000% 12.594 sec.
99.900% 12.594 sec.
99.990% 12.594 sec.状态字符串包含(按顺序):ClickHouse 服务器的端点。
已处理查询的数量。
QPS:在 --delay 参数指定的时间段内服务器每秒执行的查询数量。
RPS:在 --delay 参数指定的时间段内服务器每秒读取的行数。
MiB/s:在 --delay 参数中指定的时间段内,服务器每秒读取多少兆字节。
结果 RPS:在 --delay 参数中指定的时间段内,服务器每秒将多少行放入查询结果中。
结果 MiB/s。 在 --delay 参数指定的时间段内,服务器每秒向查询结果放置多少兆字节。
查询执行时间的百分位数。
2.基本测试
基准测试的内容可以看官网,具体的sql在这里查看。我是共写了4个sql文件,内容如下
# test1.sql
SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue FROM db_bench.lineorder_flat WHERE toYear(LO_ORDERDATE) = 1993 AND LO_DISCOUNT BETWEEN 1 AND 3 AND LO_QUANTITY < 25;
SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue FROM db_bench.lineorder_flat WHERE toYYYYMM(LO_ORDERDATE) = 199401 AND LO_DISCOUNT BETWEEN 4 AND 6 AND LO_QUANTITY BETWEEN 26 AND 35;
SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue FROM db_bench.lineorder_flat WHERE toISOWeek(LO_ORDERDATE) = 6 AND toYear(LO_ORDERDATE) = 1994 AND LO_DISCOUNT BETWEEN 5 AND 7 AND LO_QUANTITY BETWEEN 26 AND 35;# test2.sql
SELECT sum(LO_REVENUE),toYear(LO_ORDERDATE) AS year,P_BRAND FROM db_bench.lineorder_flat WHERE P_CATEGORY = 'MFGR#12' AND S_REGION = 'AMERICA' GROUP BY year,P_BRAND ORDER BY year,P_BRAND;
SELECT sum(LO_REVENUE),toYear(LO_ORDERDATE) AS year,P_BRAND FROM db_bench.lineorder_flat WHERE P_BRAND >= 'MFGR#2221' AND P_BRAND <= 'MFGR#2228' AND S_REGION = 'ASIA' GROUP BY year,P_BRAND ORDER BY year,P_BRAND;
SELECT sum(LO_REVENUE), toYear(LO_ORDERDATE) AS year, P_BRAND FROM db_bench.lineorder_flat WHERE P_BRAND = 'MFGR#2239' AND S_REGION = 'EUROPE' GROUP BY year, P_BRAND ORDER BY year, P_BRAND;# test3.sql
SELECT C_NATION, S_NATION, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM db_bench.lineorder_flat WHERE C_REGION = 'ASIA' AND S_REGION = 'ASIA' AND year >= 1992 AND year <= 1997 GROUP BY C_NATION, S_NATION, year ORDER BY year ASC, revenue DESC;
SELECT C_CITY, S_CITY, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM db_bench.lineorder_flat WHERE C_NATION = 'UNITED STATES' AND S_NATION = 'UNITED STATES' AND year >= 1992 AND year <= 1997 GROUP BY C_CITY, S_CITY, year ORDER BY year ASC, revenue DESC;
SELECT C_CITY, S_CITY, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM db_bench.lineorder_flat WHERE (C_CITY = 'UNITED KI1' OR C_CITY = 'UNITED KI5') AND (S_CITY = 'UNITED KI1' OR S_CITY = 'UNITED KI5') AND year >= 1992 AND year <= 1997 GROUP BY C_CITY, S_CITY, year ORDER BY year ASC, revenue DESC;
SELECT C_CITY, S_CITY, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM db_bench.lineorder_flat WHERE (C_CITY = 'UNITED KI1' OR C_CITY = 'UNITED KI5') AND (S_CITY = 'UNITED KI1' OR S_CITY = 'UNITED KI5') AND toYYYYMM(LO_ORDERDATE) = 199712 GROUP BY C_CITY, S_CITY, year ORDER BY year ASC, revenue DESC;# test4.sql
SELECT toYear(LO_ORDERDATE) AS year, C_NATION, sum(LO_REVENUE - LO_SUPPLYCOST) AS profit FROM db_bench.lineorder_flat WHERE C_REGION = 'AMERICA' AND S_REGION = 'AMERICA' AND (P_MFGR = 'MFGR#1' OR P_MFGR = 'MFGR#2') GROUP BY year, C_NATION ORDER BY year ASC, C_NATION ASC;
SELECT toYear(LO_ORDERDATE) AS year, S_NATION, P_CATEGORY, sum(LO_REVENUE - LO_SUPPLYCOST) AS profit FROM db_bench.lineorder_flat WHERE C_REGION = 'AMERICA' AND S_REGION = 'AMERICA' AND (year = 1997 OR year = 1998) AND (P_MFGR = 'MFGR#1' OR P_MFGR = 'MFGR#2') GROUP BY year, S_NATION, P_CATEGORY ORDER BY year ASC, S_NATION ASC, P_CATEGORY ASC;
SELECT toYear(LO_ORDERDATE) AS year, S_CITY, P_BRAND, sum(LO_REVENUE - LO_SUPPLYCOST) AS profit FROM db_bench.lineorder_flat WHERE S_NATION = 'UNITED STATES' AND (year = 1997 OR year = 1998) AND P_CATEGORY = 'MFGR#14' GROUP BY year, S_CITY, P_BRAND ORDER BY year ASC, S_CITY ASC, P_BRAND ASC;
2.1 测试方法
clickhouse-benchmark < test1.sql
clickhouse-benchmark < test2.sql
clickhouse-benchmark < test3.sql
clickhouse-benchmark < test4.sql
2.2 测试结果
# test1
Queries executed: 921 (30700.000%).localhost:9000, queries 2, QPS: 5.558, RPS: 263878534.377, MiB/s: 2012.050, result RPS: 5.558, result MiB/s: 0.000.0.000% 0.091 sec.
10.000% 0.091 sec.
20.000% 0.091 sec.
30.000% 0.091 sec.
40.000% 0.091 sec.
50.000% 0.268 sec.
60.000% 0.268 sec.
70.000% 0.268 sec.
80.000% 0.268 sec.
90.000% 0.268 sec.
95.000% 0.268 sec.
99.000% 0.268 sec.
99.900% 0.268 sec.# test2
Queries executed: 32 (1066.667%).localhost:9000, queries 1, QPS: 0.054, RPS: 326066467.053, MiB/s: 2797.293, result RPS: 3.043, result MiB/s: 0.000.0.000% 18.401 sec.
10.000% 18.401 sec.
20.000% 18.401 sec.
30.000% 18.401 sec.
40.000% 18.401 sec.
50.000% 18.401 sec.
60.000% 18.401 sec.
70.000% 18.401 sec.
80.000% 18.401 sec.
90.000% 18.401 sec.
95.000% 18.401 sec.
99.000% 18.401 sec.
99.900% 18.401 sec.
99.990% 18.401 sec.# test3
localhost:9000, queries 73, QPS: 0.082, RPS: 340111314.396, MiB/s: 2527.187, result RPS: 15.938, result MiB/s: 0.000.0.000% 0.182 sec.
10.000% 0.217 sec.
20.000% 0.230 sec.
30.000% 10.547 sec.
40.000% 12.614 sec.
50.000% 14.860 sec.
60.000% 16.560 sec.
70.000% 18.072 sec.
80.000% 18.285 sec.
90.000% 19.915 sec.
95.000% 19.962 sec.
99.000% 20.011 sec.
99.900% 20.059 sec.
99.990% 20.059 sec.# test4
Queries executed: 3 (100.000%).localhost:9000, queries 1, QPS: 0.474, RPS: 683988835.693, MiB/s: 9777.042, result RPS: 378.949, result MiB/s: 0.004.0.000% 2.111 sec.
10.000% 2.111 sec.
20.000% 2.111 sec.
30.000% 2.111 sec.
40.000% 2.111 sec.
50.000% 2.111 sec.
60.000% 2.111 sec.
70.000% 2.111 sec.
80.000% 2.111 sec.
90.000% 2.111 sec.
95.000% 2.111 sec.
99.000% 2.111 sec.
99.900% 2.111 sec.
99.990% 2.111 sec.
2.3 cpu情况
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND7031 999 20 0 0.257t 1.470g 99080 S 4656 0.8 3643:13 clickhouse-serv
2.4 读取数据情况
结论: 可以看到读取数据的速度还是非常快的,每秒读取的行数和数据量都很大,读取时非常耗cpu资源,但内存占用缺极少
相关文章:

clickhouse-压测
一、数据集准备 数据集可以使用官网数据集,也可以用ssb-dbgen来准备 1.准备数据 这里最后生成表的数据行数为60亿行,数据量为300G左右 git clone https://github.com/vadimtk/ssb-dbgen.git cd ssb-dbgen/ make1.1 生成数据 # -s 指生成多少G的数据…...

AI夏令营第三期用户新增挑战赛学习笔记
1、数据可视化 1.数据探索和理解:数据可视化可以帮助我们更好地理解数据集的特征、分布和关系。通过可视化数据,我们可以发现数据中的模式、异常值、缺失值等信息,从而更好地了解数据的特点和结构。2.特征工程:数据可视化可以帮助…...

pdf转ppt软件哪个好用?推荐一个好用的pdf转ppt软件
在日常工作和学习中,我们经常会遇到需要将PDF文件转换为PPT格式的情况。PDF格式的文件通常用于展示和保留文档的原始格式,而PPT格式则更适合用于演示和展示。为了满足这一需求,许多软件提供了PDF转PPT的功能,使我们能够方便地将PD…...
Linux 内核函数kallsyms_lookup_name
文章目录 一、API使用二、源码解析2.1 kallsyms_lookup_name2.2 kallsyms_expand_symbol2.3 kallsyms_sym_address2.3.1 x86_642.3.2 arm642.3.3 CONFIG_KALLSYMS_ABSOLUTE_PERCPU 参考资料 一、API使用 kallsyms_lookup_name 是一个内核函数,用于通过符号名称查找…...

强化学习在游戏AI中的应用与挑战
文章目录 1. 强化学习简介2. 强化学习在游戏AI中的应用2.1 游戏智能体训练2.2 游戏AI决策2.3 游戏测试和优化 3. 强化学习在游戏AI中的挑战3.1 探索与利用的平衡3.2 多样性的应对 4. 解决方法与展望4.1 深度强化学习4.2 奖励设计和函数逼近 5. 总结 🎉欢迎来到AIGC人…...
6 Python的异常处理
概述 在上一节,我们介绍了Python的面向对象编程,包括:类的定义、类的使用、类变量、实例变量、实例方法、类方法、静态方法、类的运算符重载、继承等内容。在这一节中,我们将介绍Python的异常处理。异常是指程序在运行过程中出现的…...
【跨语言通讯】
传统的跨语言通讯方案: 基于SOAP消息格式的WebService 基于JSON消息格式的RESTful 服务 主要弊端: XML体积太大,解析性能极差 JSON体积相对较小,解析相对较快,但表达能力较弱 如今比较流行的跨语言通讯方案&…...

Android 基础知识
一、Activity 1、onSaveInstanceState(),onRestoreInstanceState的调用时机 onSaveInstanceState 调用时机 从最近应用中选择运行其他程序时 但用户按下Home键时 屏幕方向切换时 按下电源案件时 从当前activity启动一个新的activity时 onRestorInstanceState调用时机 只…...

Linux常用命令_帮助命令、用户管理命令、压缩解压命令
文章目录 1. 帮助命令1.1 帮助命令:man1.2 帮助命令:help1.3 其他帮助命令 2. 用户管理命令2.1 用户管理命令: useradd2.2 用户管理命令: passwd2.3 用户管理命令: who2.4 用户管理命令: w 3. 压缩解压命令3.1 压缩解压命令: gzip3.2 压缩解压命令: gunzip3.3 压缩解压命令: ta…...
解决 KylinOS “Could not get lock /var/lib/dpkg/lock”错误
最近,我遇到了 “Could not get lock /var/lib/dpkg/lock”的错误,我既不能安装任何软件包,也不能更新系统。此错误也与“Could not get lock /var/lib/apt/lists/lock”错误密切相关。以下是 Ubuntu 20.04 上的一些样本输出。 Reading package lists… Done E: Could not…...
PHP pdf 自动填写表单
一、下载github上的项目,地址 二、下载pdftk 地址 // 转化PDF模板 pdftk modele.pdf output modele2.pdf# 填充pdf文件中的表单 require(fpdm.php); $fields array(name > My name,address > My address,city > My city,phone > My phone nu…...
Win2016Server绑定多网卡实现负载均衡
一、服务器端: 1、输入ncpa.cpl打开网络连接,对要绑定的网卡勾掉IPV4,IPV4地址选择自动 2、输入servermanager.exe,打开服务器管理器 3、在 [本地服务器] 中,点后边的 “已禁用” ,在 [适配器和接口] 小窗口…...

微软宣布在 Excel 中使用 Python:结合了 Python 的强大功能和 Excel 的灵活性。
文章目录 Excel 中的 Python 有何独特之处?1. Excel 中的 Python 是为分析师构建的。高级可视化机器学习、预测分析和预测数据清理 2. Excel 中的 Python 通过 Anaconda 展示了最好的 Python 分析功能。3. Excel 中的 Python 在 Microsoft 云上安全运行,…...
学习心得03:OpenCV
数学真是不可思议,不管什么东西,都能用数学来处理。OpenCV以前也接触过,这次是系统学习一下。 颜色模型 RGB,YUV,HSV,Lab,GRAY 颜色转换cvtColor()/convertTo(),通道分离split()&…...

ubuntu学习(五)----读取文件以及光标的移动
1、读取文件函数原型介绍 ssize_t read(int fd,void*buf,size_t count) 参数说明: fd: 是文件描述符 buf:为读出数据的缓冲区; count: 为每次读取的字节数(是请求读取的字节数,读上来的数据保存在缓冲区buf中,同时文…...

Python 数据分析——matplotlib 快速绘图
matplotlib采用面向对象的技术来实现,因此组成图表的各个元素都是对象,在编写较大的应用程序时通过面向对象的方式使用matplotlib将更加有效。但是使用这种面向对象的调用接口进行绘图比较烦琐,因此matplotlib还提供了快速绘图的pyplot模块。…...

uniapp小程序位置信息配置
uniapp 小程序获取当前位置信息报错 报错信息: getLocation:fail the api need to be declared in the requiredPrivateInfos field in app.json/ext.json 需要在manifest.json配置文件中进行配置:...
《基于 Vue 组件库 的 Webpack5 配置》1.模式 Mode 和 vue-loader
一定要配置 模式 Mode,这里有个小知识点,环境变量 process.env.NODE_ENV module.exports {mode: production,// process.env.NODE_ENV 或 development, }一定要配置 vue-loader Vue Loader v15 现在需要配合一个 webpack 插件才能正确使用; …...

01.sqlite3学习——数据库概述
目录 重点概述总结 数据库标准介绍 什么是数据库? 数据库是如何存储数据的? 数据库是如何管理数据的? 数据库系统结构 常见关系型数据库管理系统 关系型数据库相关知识点 数据库与文件存储数据对比 重点概述总结 数据库可以理解为操…...

视频集中存储/云存储平台EasyCVR国标GB28181协议接入的报文交互数据包分析
安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。视频汇聚融合管理…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...

HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

认识CMake并使用CMake构建自己的第一个项目
1.CMake的作用和优势 跨平台支持:CMake支持多种操作系统和编译器,使用同一份构建配置可以在不同的环境中使用 简化配置:通过CMakeLists.txt文件,用户可以定义项目结构、依赖项、编译选项等,无需手动编写复杂的构建脚本…...

Ubuntu系统多网卡多相机IP设置方法
目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机,交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息,系统版本:Ubuntu22.04.5 LTS;内核版本…...

消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...