当前位置: 首页 > news >正文

Python高光谱遥感数据处理与高光谱遥感机器学习方法应用

本文提供一套基于Python编程工具的高光谱数据处理方法和应用案例。

本文涵盖高光谱遥感的基础、方法和实践。基础篇以学员为中心,用通俗易懂的语言解释高光谱的基本概念和理论,旨在帮助学员深入理解科学原理。方法篇结合Python编程工具,专注于解决高频技术难题,通过复现高光谱数据处理和分析过程,并解析代码,提供高效反馈,使学员掌握实践技巧。实践篇通过矿物识别、农业应用、木材含水量提取、土壤有机碳评估等案例,提供可借鉴的高光谱应用技术方案,结合Python科学计算、可视化、数据处理和机器学习库,深入讲解应用开发。通过4个应用场景和12个实践案例,学员将能够提升高光谱技术的应用水平。此外,还提供机器学习的系统课程,帮助学员建立个性化的高光谱遥感机器学习知识体系和方法指南。

课程深入探讨了高光谱成像,涵盖了基本概念、成像原理、数据处理和分析方法,以及运用机器学习和深度学习模型提取和应用高光谱信息的技术。此外,通过Python实践练习,课程帮助学员巩固所学知识,使其得以深入理解与实践。

你将获得:

1.全套的高光谱数据处理方法和应用案例(包含python源码)

2.高光谱与机器学习结合的系统化解决方案

3.最新的技术突破讲解和复现代码

4.科研项目实践和学习方法的专题分享

5.高光谱数据预处理-机器学习-深度学习-图像分类-参数回归等12个专题练习

高光谱遥感信息对于我们认识世界具有重要意义。尽管大部分物质在人眼中看似无异,然而高光谱遥感的观察下,它们呈现出独特的"光谱特征"。这种能够窥见事物的"本质"能力具备着革命性的潜能,对精准农业、地球观测、艺术分析和医学等领域带来巨大的影响。

点击查看原文

第一章、高光谱基础

第一课:高光谱遥感基本概念

01)高光谱遥感

02)光的波长

03)光谱分辨率

04)高光谱遥感的历史和发展

第二课:高光谱传感器与数据获取

01)高光谱遥感成像原理与传感器

02)卫星高光谱数据获取

03)机载(无人机)高光谱数据获取

04)地面光谱数据获取

05)构建光谱库

第三课:高光谱数据预处理

01)图像的物理意义

02)数字量化图像(DN值)

03)辐射亮度数据

04)反射率

05)辐射定标

06大气校正

练习1:

资源02D高光谱卫星数据辐射定标与大气校正

第四课:高光谱分析

01)光谱特征分析

02)高光谱图像分类

03)高光谱地物识别

04)高光谱混合像元分解

练习2

(1)使用DISPEC 对光谱库数据进行光谱吸收特征分析

(2)使用ENVI的沙漏程序对资源02D高光谱卫星数据进行混合像元分解。

第五课:高光谱应用

01)植被调查

02)水质监测

03)岩石、矿物

04)土壤

第二章、高光谱开发基础(Python)

第一课:Python编程介绍

01)Python简介

02)变量和数据类型

03)控制结构

04)功能和模块

05)文件、包、环境

练习3

(1)python基础语法练习

(2)文件读写练习

(3)包的创建导入练习

第二课:Python空间数据处理

01)空间数据Python处理介绍

02)矢量数据处理

03)栅格数据处理

练习4

(1)python矢量数据处理练习

(2)python栅格处理练习

第三课:python 高光谱数据处理

01)数据读取

02)数据预处理

03)光谱特征提取

04)混合像元分解

练习5

(1)高光谱数据读取

(2)高光谱数据预处理

(3)光谱特征提取

(4)混合像元分解

第三章、高光谱机器学习技术(python)

第一课:机器学习概述与python实践

01)机器学习与sciki learn 介绍

02)数据和算法选择

03)通用学习流程

04)数据准备

05)模型性能评估

06)机器学习模型

练习6

机器学习sciki learn练习

第二课:深度学习概述与python实践

01)深度学习概述

02)深度学习框架

03)pytorch开发基础-张量

04)pytorch开发基础-神经网络

05)卷积神经网络

06)手写数据识别

07)图像识别

练习7

(1)深度学习pytorch基础练习

(2)手写数字识别与图像分类练习

第三课:高光谱深度学习机器学习实践

01)高光谱图像分类机器学习实践

02)卷积神经网络(CNN)在高光谱数据分析中的应用

03)循环神经网络(RNN)在高光谱数据分析中的应用

练习8

(1)高光谱深度学习练习

(2)使用自己数据测试02)深度学习框架

第四章、典型案例操作实践

第一课:矿物填图案例

01)岩矿光谱机理

02)基于光谱特征的分析方法

03)混合像元分解的分析方法

04)矿物识别机器学习分析方法

05)矿物分类图深度学习方法

练习9

(1)矿物高光谱混合像元分解练习

(2)矿物识别和分类标签数据制作

(3)矿物分类图深度学习方法

第二课:农业应用案例

01)植被光谱机理

02)农作物病虫害分类

03)农作物分类深度学习实践

练习10

(1)农作物病虫害数据分类

(2)农作物分类深度学习练习

第三课:土壤质量评估案例

01)土壤光谱机理

02)土壤质量调查

03)土壤含水量光谱评估方法

04)土壤有机质含量评估与制图

练习11

(1)基于9种机器学习模型的土壤水分含量回归

(2)土壤有机质含量回归与制图

第四课:木材含水率评估案例

01)高光谱无损检测

02)木材无损检测

03)高光谱木材含水量评估

练习12

木材含水量评估和制图

点击查看原文

相关文章:

Python高光谱遥感数据处理与高光谱遥感机器学习方法应用

本文提供一套基于Python编程工具的高光谱数据处理方法和应用案例。 本文涵盖高光谱遥感的基础、方法和实践。基础篇以学员为中心,用通俗易懂的语言解释高光谱的基本概念和理论,旨在帮助学员深入理解科学原理。方法篇结合Python编程工具,专注…...

Java实现接收xml格式数据并解析,返回xml格式数据

需求描述&#xff1a;后端接受xml格式数据&#xff0c;解析出相应数据&#xff0c;并返回xml格式数据。 <!--XML解析--><dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</artifactId>…...

【C++】初步认识模板

&#x1f3d6;️作者&#xff1a;malloc不出对象 ⛺专栏&#xff1a;C的学习之路 &#x1f466;个人简介&#xff1a;一名双非本科院校大二在读的科班编程菜鸟&#xff0c;努力编程只为赶上各位大佬的步伐&#x1f648;&#x1f648; 目录 前言一、泛型编程二、函数模板2.1 函…...

Ansible 临时命令搭建安装仓库

创建一个名为/ansible/yum.sh 的 shell 脚本&#xff0c;该脚本将使用 Ansible 临时命令在各个受管节点上安装 yum 存储库. 存储库1&#xff1a; 存储库的名称为 EX294_BASE 描述为 EX294 base software 基础 URL 为 http://content/rhel8.0/x86_64/dvd/BaseOS GPG 签名检查为…...

phpstorm动态调试

首先在phpstudy搭建好网站&#xff0c;在管理拓展开启xdebug拓展 查看php.ini配置已经更改 需要增添修改一下设置 [Xdebug] zend_extensionD:/phpstudy_pro/Extensions/php/php5.6.9nts/ext/php_xdebug.dll xdebug.collect_params1 xdebug.collect_return1 xdebug.auto_trace…...

二叉树的层序遍历及完全二叉树的判断

文章目录 1.二叉树层序遍历 2.完全二叉树的判断 文章内容 1.二叉树层序遍历 二叉树的层序遍历需要一个队列来帮助实现。 我们在队列中存储的是节点的地址&#xff0c;所以我们要对队列结构体的数据域重定义&#xff0c; 以上代码 从逻辑上来讲就是1入队&#xff0c;1出队&am…...

java八股文面试[JVM]——JVM内存结构

参考&#xff1a; JVM学习笔记&#xff08;一&#xff09;_卷心菜不卷Iris的博客-CSDN博客 JVM是运行在操作系统之上的&#xff0c;它与硬件没有直接的交互 JVM内存结构&#xff1a; 方法区&#xff1a;存储已被虚拟机加载的类元数据信息(元空间) 堆&#xff1a;存放对象实…...

Kafka基本使用

查看Kafka的进程是否在运行 #命令行终端中运行如下命令 ps -ef | grep kafkafind / -iname kafka-server-start.shcd /usr/local/kafka/bin/#启动kafka ./kafka-server-start.sh -daemon /usr/local/kafka/config/server.propertiesKafka默认使用9092端口提供服务&#xf…...

【目标检测】理论篇(2)YOLOv3网络构架及其代码实现

网络构架图&#xff1a; 代码实现&#xff1a; import math from collections import OrderedDictimport torch.nn as nn#---------------------------------------------------------------------# # 残差结构 # 利用一个1x1卷积下降通道数&#xff0c;然后利用一个3x3卷…...

k8s之工作负载、Deployment、DaemonSet、StatefulSet、Job、CronJob及GC

文章目录 1、工作负载1.1、定义1.2、分类 2、Deployment2.1、定义2.2、Deployment创建2.3、Deployment 更新机制2.3.1、比例缩放&#xff08;Proportional Scaling&#xff09;2.3.2、HPA&#xff08;动态扩缩容&#xff09;2.3.2.1、需要先安装metrics-server2.3.2.2、配置hpa…...

IDEA项目实践——Element UI概述

系列文章目录 IDEA项目实践——JavaWeb简介以及Servlet编程实战 IDEA项目实践——Spring当中的切面AOP IDEA项目实践——Spring框架简介&#xff0c;以及IOC注解 IDEA项目实践——动态SQL、关系映射、注解开发 IDEWA项目实践——mybatis的一些基本原理以及案例 文章目录 …...

Docker 容器学习笔记

Docker 容器学习笔记 容器的由来 早先&#xff0c;虚拟机通过操作系统实现相互隔离&#xff0c;保证应用程序在运行时相互独立&#xff0c;避免相互干扰。但是操作系统又笨又重&#xff0c;耗费资源严重&#xff1a; 容器技术只隔离应用程序的运行时环境但容器之间共享同一个…...

Day03-vue基础

Day03-vue基础 一 列表渲染 v-for这个指令可以实现列表渲染 1 数组 <ul><!-- v-for遍历的时候,key必须赋唯一值第一个参数是数组元素,第二个参数是元素下标--><li v-for="(item,index) in [1,3,5,7]" :key="item">{{item}}--{{index}…...

RAC sid=‘*‘ 最好加上 v$system_parameter

实验结论&#xff1a;在RAC环境中&#xff0c;最好修改参数sid* 安全可靠&#xff0c;因为暂时未明确知道哪些参数是默认全局修改&#xff0c;什么参数是默认单节点修改的&#xff0c;* 靠谱&#xff0c;不容易出问题 在RAC环境中&#xff0c;修改全局参数scopespfile生效时&am…...

【位运算进阶之----左移(<<)】

今天我们来谈谈左移这件事。 ❤️简单来说&#xff0c;对一个数左移就是在其的二进制表达末尾添0。左移一位添一个0&#xff0c;结果就是乘以2&#xff1b;左移两位添两个0&#xff0c;结果就乘以2 ^ 2&#xff1b;左移n位添n个0&#xff0c;结果就是乘以2 ^ n&#xff0c;小心…...

石油石化行业网络监控运维方案,全局态势感知,实时预警

石油石化行业是一个高科技密集型行业&#xff0c;投资巨大、人员众多&#xff0c;各产业价值链的关联度较高&#xff0c;大型石油石化企业实现了上中下游产业的一体化协同发展。随着工业4.0时代的来临&#xff0c;信息化和工业化融合&#xff0c;物联网、云计算等新技术的普及推…...

MyBatis 的关联关系配置 一对多,一对一,多对多 关系的映射处理

目录 一.关联关系配置的好处 二. 导入数据库表&#xff1a; 三. 一对多关系&#xff1a;-- 一个订单对应多个订单项 四.一对一关系&#xff1a;---一个订单项对应一个订单 五.多对多关系&#xff08;两个一对多&#xff09; 一.关联关系配置的好处 MyBatis是一…...

Diffusion Models for Image Restoration and Enhancement – A Comprehensive Survey

图像恢复与增强的扩散模型综述 论文链接&#xff1a;https://arxiv.org/abs/2308.09388 项目地址&#xff1a;https://github.com/lixinustc/Awesome-diffusion-model-for-image-processing/ Abstract 图像恢复(IR)一直是低水平视觉领域不可或缺的一项具有挑战性的任务&…...

Springboot开发所遇问题(持续更新)

SpringBoot特征&#xff1a; 1. SpringBoot Starter&#xff1a;他将常用的依赖分组进行了整合&#xff0c;将其合并到一个依赖中&#xff0c;这样就可以一次性添加到项目的Maven或Gradle构建中。 2,使编码变得简单&#xff0c;SpringBoot采用 JavaConfig的方式对Spring进行配置…...

智能电视与win10电脑后续无法实现DLNA屏幕共享

问题背景&#xff1a; 我用的是TCL电视&#xff0c;但是并不是最新&#xff0c;打开的方式是U盘->电脑&#xff0c;各位看自己情况&#xff0c;很多问题都大概率是智能电视问题。 情景假设&#xff1a; 假设你已经完成原先智能电视该有的步骤&#xff0c;通过DLNA&#xf…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...