DBO优化SVM的电力负荷预测,附MATLAB代码
今天为大家带来一期基于DBO-SVM的电力负荷预测。
原理详解
文章对支持向量机(SVM)的两个参数进行优化,分别是:惩罚系数c和 gamma。
其中,惩罚系数c表示对误差的宽容度。c越高,说明越不能容忍出现误差,容易过拟合。c越小,容易欠拟合。c过大或过小,泛化能力都会变差。
gamma是选择RBF函数作为kernel后,该函数自带的一个参数。隐含地决定了数据映射到新的特征空间后的分布,gamma越大,支持向量越少,gamma值越小,支持向量越多。支持向量的个数影响训练与预测的速度。
本文所选SVM是从官网下载的libsvm-3.3版本,作者已编译好,大家可以直接运行。如果想自行编译的童鞋可以从网站下载:https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html,编译步骤可以参考https://blog.csdn.net/qq_42457960/article/details/109275227
采用蜣螂优化SVM,参数设置范围分别是:
| 惩罚系数c | [0.001, 1000] |
| gamma | [2^-8,2^8] |
将DBO种群数设置为:30,迭代次数设置为60。
数据准备
对电力负荷数据进行处理
本次数据包含负荷值,温度,湿度,风速,压强,降水量,能见度,水汽压和体感温度,部分数据截图如下:

选取1200个样本作为训练集,每个样本组成为:当天24个小时的全部数据,因此训练集的输入数据大小为1200*216,其中216=24*9,24代表24个小时,9代表9个特征。训练集的输出数据大小为:1200*1。1代表未来一小时的负荷值。
选取100个样本作为测试集,同理,测试集的输入数据大小为100*216,训练集的输出数据大小为:100*1。
结果展示
采用SVM对电力负荷数据进行训练和预测
SVM的预测结果如下:

可以看到,未优化的SVM预测效果还是不错的,但是仍然有改进空间。
DBO-SVM模型的预测效果如下:

误差对比图如下:

DBO-SVM的进化曲线:

可以看到DBO-SVM预测效果有了明显提升,DBO-SVM的MSE误差为0.79022,相比于未优化SVM的17.2023有了很大提升!
DBO-SVM的回归拟合图:

误差直方图:



部分代码
%% 初始化DBO参数
pop=30; %初始种群规模
maxgen=60; %最大进化代数
lb = [10^-3, 2^-8];
ub = [10^3, 2^8];
dim = 2;
[fMin,bestX,Convergence_curve ] = DBOforSVM(pop, maxgen,lb,ub,dim,inputn,output_train,inputn_test,output_test);
bestc=bestX(1);
bestg=bestX(2);
disp(['最佳参数为:',num2str(bestX)])
cmd = [' -t 2',' -c ',num2str(bestc),' -g ',num2str(bestg),' -s 3 -h 0 -q'];
mode1= libsvmtrain(output_train,inputn,cmd);
[test_simu1,~,~]= libsvmpredict(output_test,inputn_test,mode1);
mse1=mse(output_test,test_simu1);
error1 = output_test - test_simu1;%% 绘制进化曲线
figure
plot(Convergence_curve,'r-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('DBO-SVM的MSE进化曲线')
% 绘制误差对比图
figure
plot(abs(error1),'-*')
hold on
plot(abs(error0),'-or')
title(['SVM的MSE:',num2str(mse0),newline,'DBO-SVM的MSE:',num2str(mse1)])
xlabel('预测样本','fontsize',12)
ylabel('误差绝对值','fontsize',12)
legend('DBO-SVM预测器预测','SVM预测器预测')
% 绘制结果对比曲线图
figure
plot(output_test,'b-.')
hold on
plot(test_simu0,'r')
hold on
plot(test_simu1,'g')
hold off
grid on
title(['结果对比曲线图'])
legend('真实值','SVM预测值','DBO-SVM预测值')
xlabel('样本编号')
ylabel('负荷值')%% 回归图与误差直方图
figure;
plotregression(test_simu1,output_test,['优化后回归图']);
set(gcf,'color','w')figure;
ploterrhist(test_simu1-output_test,['误差直方图']);
set(gcf,'color','w')%% 打印出评价指标
% 预测结果评价
ae= abs(test_simu1-output_test);
rmse = (mean(ae.^2)).^0.5;
mse = mean(ae.^2);
mae = mean(ae);
mape = mean(ae./test_simu1);
[R,r] = corr(output_test,test_simu1);
R2 = 1 - norm(output_test - test_simu1)^2 / norm(output_test-mean(output_test ))^2;
disp('预测结果评价指标:')
disp(['RMSE = ', num2str(rmse)])
disp(['MSE = ', num2str(mse)])
disp(['MAE = ', num2str(mae)])
disp(['MAPE = ', num2str(mape)])
disp(['决定系数R^2为:',num2str(R2)]) 代码获取
完整代码获取,后台回复关键词:
DBOSVM
相关文章:
DBO优化SVM的电力负荷预测,附MATLAB代码
今天为大家带来一期基于DBO-SVM的电力负荷预测。 原理详解 文章对支持向量机(SVM)的两个参数进行优化,分别是:惩罚系数c和 gamma。 其中,惩罚系数c表示对误差的宽容度。c越高,说明越不能容忍出现误差,容易过拟合。c越小࿰…...
第一百二十五回 dart中List和Map的常见用法
文章目录 概念介绍使用方法初始化相互转换元素操作 经验分享 我们在上一章回中介绍了Flexible组件相关的内容,本章回中将介绍 dart中的List和Map.闲话休提,让我们一起Talk Flutter吧。 概念介绍 我们在这里介绍的List也叫列表,它表示一组相…...
小白到运维工程师自学之路 第七十九集 (基于Jenkins自动打包并部署Tomcat环境)2
紧接上文 4、新建Maven项目 clean package -Dmaven.test.skiptrue 用于构建项目并跳过执行测试 拉到最后选择构建后操作 SSH server webExec command scp 192.168.77.18:/root/.jenkins/workspace/probe/psi-probe-web/target/probe.war /usr/local/tomcat/webapps/ /usr/loca…...
林【2021】
三、应用 1.字符串abaaabaabaa,用KMP改进算法求出next和nextval的值 2.三元组矩阵 4.二叉树变森林 四、代码(单链表递增排序,二叉树查找x,快速排序)...
c语言练习题30:判断一个数是否为2^n
判断一个数是否为2^n 思路:2^n中只有一个1故可以通过n&(n-1)是否为0来判断。 代码:...
VX小程序 实现区域转图片预览
图例 方法一 1、安装插件 wxml2canvas npm install --save wxml2canvas git地址参照:https://github.com/wg-front/wxml2canvas 2、类型 // 小程序页面 let data{list:[{type:wxml,class:.test_center .draw_canvas,limit:.test_center,x:0,y:0}] } 3、数据结…...
HTML5-1-标签及属性
文章目录 语法规范标签规范标签列表通用属性基本布局 页面的组成: HTML(HyperText Markup Language,超文本标记语言)是用来描述网页的一种语言,它不是一种编程语言,而是一种标记语言。 HTML5 是下一代 HTM…...
5017. 垦田计划
Powered by:NEFU AB-IN Link 文章目录 5017. 垦田计划题意思路代码 5017. 垦田计划 题意 略 思路 二分最小需要几天即可 注意: 天数不能低于k二分时,若耗时天数小于mid,直接continue 代码 /* * Author: NEFU AB-IN * Date: 2023-08-26 22:4…...
【校招VIP】产品思维分析之面试新的功能点设计
考点介绍: 这种题型是面试里出现频度最高,也是难度最大的一种,需要面试者对产品本身的功能、扩展性以及行业都有一定的了解。而且分析时间较短,需要一定的产品能力和回答技巧。 『产品思维分析之面试新的功能点设计』相关题目及解…...
indexDB vue 创建数据库 创建表 添加对象数据
1 .open(dbName,1) 版本号可以省略 let dbName hist-data-1dconst request indexedDB.open(dbName); // 如果你不知道数据库的版本号,可以省略第二个参数,这样 indexedDB 会默认为你打开最新版本的数据库,因为版本号总是自增长的 2 第一次…...
Django基础1——项目实现流程
文章目录 一、前提了解二、准备开发环境2.1 创建项目2.1.1 pycharm创建2.1.2 命令创建 2.2 创建应用 例1:效果实现例2:网页展示日志文件 一、前提了解 基本了解: 官网Django是Python的一个主流Web框架,提供一站式解决方案…...
基于SSM的在线购物系统——LW模板
摘 要 人类进入21世纪以来,很多技术对社会产生了重大的影响。信息技术是最具代表的新时代技术,信息技术起源于上世纪,在起初的时候只是实现在单机上进行信息的数字化管理,随着网络技术、软件开发技术、通讯技术的发展,…...
Mac操作系统上设置和配置PPPoE连接
嗨,在使用Mac的小伙伴么!你是否在Mac操作系统上尝试设置和配置PPPoE连接,却不知道怎么设置?别担心,今天我将为你一步步教你如何在Mac上进行设置和配置。无论你是新手还是有经验的用户,本文都将帮助你轻松完…...
Python类的属性和方法
Python类是一种面向对象编程的基本概念,它可以用来创建对象,对象可以拥有属性和方法。 属性是类的特征,它们用于存储对象的状态。属性可以是任何数据类型,例如整数、字符串、列表等。在类中,属性通常定义为类的变量&am…...
C#Queue<T>队列出现弹出元素被最后一次压入得元素覆盖的问题
问题代码: //以下为现有代码的大概描述,只可意会,不可执行!!!Queue<Move> mQueue new Queue<Move>(); //该接口为下面描述线程A、线程B调用的接口 private void ActionTrigger(Move move)//M…...
python3GUI--模仿一些b站网页端组件By:PyQt5(详细介绍、附下载地址)
文章目录 一.前言二.展示1.banner1.静图2.动图 2.一般视频组件1.静图2.动图 3.排行榜1.静图2.动图 三.设计心得(顺序由简到难)1.排行榜2.一般视频组件3.banner 四.总结五.下载地址 一.前言 播客二连发&…...
聚类分析概述
聚类分析(Cluster Analysis)是一种无监督学习方法,用于将数据点划分为具有相似特征的组或簇。聚类分析的目标是使同一簇内的数据点之间的相似性最大化,而不同簇之间的相似性最小化。聚类分析在许多领域中都有广泛的应用࿰…...
建模杂谈系列234 基于图的程序改造
说明 为了进一步提升程序设计与运维的可靠性,我觉得(目前看来)只有依赖图的结构。 提升主要包含如下方面: 1 程序结构的简洁性:节点和边2 程序执行的可视化:交通图(红、黄、绿)3 程序支持的逻辑复杂性。…...
requestAnimationFrame(RAF)
1、RAF介绍 requestAnimateFrame(RAF)动画帧,是一个做动画的API。 如果想要一个动画流畅,就需要以60帧/s来更新视图,那么一次视图的更新就是16.67ms。 想要达到上述目标,可以通过setTimeout定时器来手动控…...
【JavaScript笔记】面对对象与构造函数
笔记作用 了解面向对象编程中的一般概念 能够基于构造函数创建对象 理解 JavaScript 中一切皆对象的语言特征 理解引用对象类型值存储的的特征 掌握包装类型对象常见方法的使用 一、深入对象 了解面向对象的基础概念,能够利用构造函数创建对象。 1. 构造函数 …...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
