当前位置: 首页 > news >正文

加油站抽烟烟火智能识别算法

加油站抽烟烟火智能识别系统通过yolo+opencv网络模型图像识别分析技术,加油站抽烟烟火智能识别算法识别出抽烟和燃放烟火的情况,并发出预警信号以提醒相关人员,减少火灾风险。OpenCV基于C++实现,同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python API,结合了OpenCV C++API和Python语言的最佳特性。OpenCV-Python使用Numpy,这是一个高度优化的数据库操作库,具有MATLAB风格的语法。所有OpenCV数组结构都转换为Numpy数组。这也使得与使用Numpy的其他库(如SciPy和Matplotlib)集成更容易。OpenCV可以在不同的系统平台上使用,包括Windows,Linux,OS,X,Android和iOS。基于CUDA和OpenCL的高速GPU操作接口也在积极开发中。

在介绍Yolo算法之前,首先先介绍一下滑动窗口技术,这对我们理解Yolo算法是有帮助的。采用滑动窗口的目标检测算法思路非常简单,它将检测问题转化为了图像分类问题。其基本原理就是采用不同大小和比例(宽高比)的窗口在整张图片上以一定的步长进行滑动,然后对这些窗口对应的区域做图像分类,这样就可以实现对整张图片的检测了,如DPM就是采用这种思路。但是这个方法有致命的缺点,就是你并不知道要检测的目标大小是什么规模,所以你要设置不同大小和比例的窗口去滑动,而且还要选取合适的步长。但是这样会产生很多的子区域,并且都要经过分类器去做预测,这需要很大的计算量,所以你的分类器不能太复杂,因为要保证速度。解决思路之一就是减少要分类的子区域,这就是R-CNN的一个改进策略,其采用了selective search方法来找到最有可能包含目标的子区域(Region Proposal),其实可以看成采用启发式方法过滤掉很多子区域,这会提升效率。

具体来说,Yolo的CNN网络将输入的图片分割成S×SS×S网格,然后每个单元格负责去检测那些中心点落在该格子内的目标,每个单元格会预测BB个边界框(bounding box)以及边界框的置信度(confidence score)。所谓置信度其实包含两个方面,一是这个边界框含有目标的可能性大小,二是这个边界框的准确度。前者记为Pr(object)Pr(object),当该边界框是背景时(即不包含目标),此时Pr(object)=0Pr(object)=0。而当该边界框包含目标时,Pr(object)=1Pr(object)=1。边界框的准确度可以用预测框与实际框(ground truth)的IOU(intersection over union,交并比)来表征,记为IOUtruthpredIOUpredtruth。因此置信度可以定义为Pr(object)∗IOUtruthpredPr(object)∗IOUpredtruth。

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。

相关文章:

加油站抽烟烟火智能识别算法

加油站抽烟烟火智能识别系统通过yoloopencv网络模型图像识别分析技术,加油站抽烟烟火智能识别算法识别出抽烟和燃放烟火的情况,并发出预警信号以提醒相关人员,减少火灾风险。OpenCV基于C实现,同时提供python, Ruby, Matlab等语言的…...

web前端开发中的响应式布局设计是什么意思?

响应式布局是指网页设计和开发中的一种技术方法,旨在使网页能够在不同大小的屏幕和设备上都能良好地显示和交互。这种方法使得网页可以自动适应不同的屏幕尺寸,包括桌面电脑、平板电脑和手机等。 在Web前端开发中,响应式布局通常使用CSS&…...

【LeetCode-面试经典150题-day14】

目录 19.删除链表的倒数第N个结点 82.删除排序链表中的重复元素Ⅱ 61. 旋转链表 86.分隔链表 146.LRU缓存 19.删除链表的倒数第N个结点 题意: 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 【输入样例】head [1,2,3,4,5…...

【算法系列总结之分组循环篇】

【算法系列总结之分组循环篇】 分组循环1446.连续字符1869.哪种连续子字符串更长1957.删除字符使字符串变好2038.如果相邻两个颜色均相同则删除当前颜色1759.统计同质子字符串的数目2110.股票平滑下跌阶段的数目1578.使绳子变成彩色的最短时间1839.所有元音按顺序排布的最长子字…...

汽车摩托车零部件出口管理ERP解决方案

近年来,随着全球经济的发展,人们对交通工具的需求增加,国内汽车、摩托车市场的不断扩大,以及国内制造技术的不断提高,中国汽车、摩托车零部件出口业务迎来了广阔的发展前景,带动了汽车配件和摩托车配件市场…...

NPM 管理组织包

目录 1、关于组织范围和包 1.1 管理无作用域的包 2、使用组织设置配置npm客户端 2.1 配置您的npm客户端以使用您组织的范围 为所有新包设置组织范围 为单个包设置组织范围 2.2 将默认包可见性更改为public 将单个包的包可见性设置为public 将所有包的包可见性设置为pu…...

蓝桥杯上岸每日N题 (修剪灌木)

大家好 我是寸铁 希望这篇题解对你有用,麻烦动动手指点个赞或关注,感谢您的关注 不清楚蓝桥杯考什么的点点下方👇 考点秘籍 想背纯享模版的伙伴们点点下方👇 蓝桥杯省一你一定不能错过的模板大全(第一期) 蓝桥杯省一你一定不…...

docker harbor私有库

目录 一.Harbor介绍 二.Harbor的特性 三.Harbor的构成 四.Harbor构建Docker私有仓库 4.2在Server主机上部署Harbor服务(192.168.158.25) 4.2.1 这时候这边就可以去查看192.168.158.25网页 4.3此时可真机访问serverIP 4.4通过127.0.0.1来登陆和推送镜…...

strcmp 的使用和模拟

目录 函数介绍: 头文件: 语法: 代码演示: 函数模拟: 函数介绍: strcmp是比较大小的函数。从字符串开始进行比较,如果两个相同位置的字符相同,那么继续往下进行比较,…...

军用加固计算机

军用加固计算机是为满足军事应用需求而设计的一种高性能、高安全性的计算机。与普通计算机相比,它具有以下特点: 加固材料:军用加固计算机通常采用钢板、铝合金等材料进行加固,能够承受较大的冲击和振动,保证在恶劣环境…...

block层:5. 请求分配

请求相关 源码基于5.10 1. 分配请求 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) {// 请求队列struct request_queue *q data->q;// 电梯struct elevator_queue *e q->elevator;u64 alloc_time_ns 0;unsigned int tag;// 判断…...

L1-038 新世界(Python实现) 测试点全过

题目 这道超级简单的题目没有任何输入。 你只需要在第一行中输出程序员钦定名言“Hello World”,并且在第二行中输出更新版的“Hello New World”就可以了。 输入样例: 无输出样例: Hello World Hello New World题解 """…...

【hello git】初识Git

目录 一、简述Git 二、Linux 下 Git 的安装:CentOS 2.1 基本命令 2.2 示例: 三、Linux 下 Git 的安装:ubuntu 3.1 基本命令 3.2 示例: 一、简述Git Git :版本控制器,记录每次的修改以及版本迭代的一个管…...

Vueelementui动态渲染Radio,Checkbox,笔记

<div id"app"><el-card style"width: 300px"><el-form label-position"top" size"mini"><el-form-item label"标题"><el-input></el-input></el-form-item><el-form-item v-f…...

SpringDataRedis 使用

1. SpringDataRedis 特点2. 使用 SpringDataRedis 步骤3. 自定义 RedisTemplate 序列化4. SpringDataRedis 操作对象 1. SpringDataRedis 特点 提供了对不同 Redis 客户端的整合&#xff08;Lettuce 和 Jedis&#xff09;提供了 RedisTemplate 统一 API 来操作 Redis支持 Redi…...

Redis全局命令与数据结构

"那篝火在银河尽头~" Redis-cli命令启动 现如今&#xff0c;我们已经启动了Redis服务&#xff0c;下⾯将介绍如何使⽤redis-cli连接、操作Redis服务。客户端与服务端交互的方式有两种: ● 第⼀种是交互式⽅式: 后续所有的操作都是通过交互式的⽅式实现&#xff0c;…...

LibreOffice新一代的办公软件for Mac/Windows免费版

LibreOffice是一款免费、开源的办公软件套件&#xff0c;可在多个操作系统上运行&#xff0c;包括Windows、Mac和Linux。它提供了一系列功能强大的办公工具&#xff0c;包括文档处理、电子表格、演示文稿、数据库管理等。 LibreOffice的界面简洁直观&#xff0c;与其他流行的办…...

Python|OpenCV-读取视频,显示视频并保存视频(3)

前言 本文是该专栏的第3篇,后面将持续分享OpenCV计算机视觉的干货知识,记得关注。 在使用OpenCV处理视频的时候,不论是摄像头画面还是视频文件,通常情况下都要使用VideoCapture类来进行每一帧图像的处理。对于OpenCV而言,只要使用视频文件作为参数,它就可以打开视频文件…...

上传WSL项目到gitlab

上传WSL项目到gitlab 设置ssh将SSH公钥添加到Gitlab 将WSL上的代码上传到gitlab确保在WSL环境中安装了git下面是上传代码到GitLab的具体步骤&#xff1a; 可能遇到的各种错误 设置ssh Gitlab添加SSH KEY 什么是SSH ? SSH 是一种网络协议&#xff0c;具备协议级别的认证及会话…...

从0开始做yolov5模型剪枝

文章目录 从0开始做yolov5模型剪枝 ****1 前言2 GitHub取源码3 原理3.1 原理3.2 network slimming过程 4 具体实施步骤4.1 安装虚拟环境4.2 配置参数4.2.1 数据集参数4.2.2 模型结构参数4.2.3 train.py中的参数 4.3 正常训练4.3.1 准备4.3.2 训练及问题解决 4.4 稀疏化训练4.4.…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...