当前位置: 首页 > news >正文

AcWing算法提高课-5.5.2最大公约数

宣传一下 算法提高课整理

CSDN个人主页:更好的阅读体验

Start

原题链接

题目描述

给定整数 N N N,求 1 ≤ x , y ≤ N 1 \le x,y \le N 1x,yN gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y) 为素数的数对 ( x , y ) (x,y) (x,y) 有多少对。

输入格式

输入一个整数 N N N

输出格式

输出一个整数,表示满足条件的数对数量。

数据范围

1 ≤ N ≤ 1 0 7 1 \le N \le 10^7 1N107

输入样例:

4

输出样例:

4

思路

首先考虑暴力。

本题答案为:
∑ i = 1 n ∑ j = 1 n ∑ p ∈ P [ gcd ⁡ ( i , j ) = p ] \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{p \in \mathbb{P}}^{}[\gcd(i,j)=p] i=1nj=1npP[gcd(i,j)=p]

gcd ⁡ ( i , j ) = p \gcd(i,j)=p gcd(i,j)=p 变成 gcd ⁡ ( i , j ) = 1 \gcd(i,j)=1 gcd(i,j)=1 然后把 p p p 除到前面的 n n n 里。

即: ∑ p ∈ P ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ n p ⌋ [ gcd ⁡ ( i , j ) = 1 ] \sum_{p \in \mathbb{P}}^{}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{p}\rfloor}[\gcd(i,j)=1] pPi=1pnj=1pn[gcd(i,j)=1]

和 5.5.1 可见的点 相同,我们可以将以上代数式变换为:

2 × ∑ p ∈ P ∑ i = 1 ⌊ n p ⌋ φ ( i ) + 1 2 \times\sum_{p \in \mathbb{P}}^{}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\varphi(i)+1 2×pPi=1pnφ(i)+1

这里不再进行推导,读者可以自行点击上方链接进行阅读。

此时进行计算,时间复杂度近似为 O ( n 2 ln ⁡ n ) \large{O(\frac{n^2}{\ln n})} O(lnnn2),将 n = 1 0 7 n=10^7 n=107 代入计算,发现超过 1 0 8 10^8 108,在 1 s 1s 1s 的时限内会 TLE \text{TLE} TLE

我们看到 ∑ i = 1 n p φ ( n p ) \large\sum_{i=1}^{\frac{n}{p}}\varphi(\frac{n}{p}) i=1pnφ(pn) 可以考虑预处理欧拉函数前缀和。

假设 s k = ∑ i = 1 k φ ( i ) \large{s_k=\sum_{i=1}^{k}\varphi(i)} sk=i=1kφ(i),则原式可化为:

2 × ∑ p ∈ P s ⌊ n p ⌋ + 1 \large{2 \times\sum_{p \in \mathbb{P}}^{}s_{\lfloor\frac{n}{p}\rfloor}+1} 2×pPspn+1

此时我们枚举 n n n 的所有质因数进行计算就不会超时。

算法时间复杂度

预处理 φ ( i ) \varphi(i) φ(i) O ( n ) O(n) O(n);
预处理 s i s_i si O ( n ) O(n) O(n);
计算结果: O ( n ln ⁡ n ) \large{O(\frac{n}{\ln n})} O(lnnn)

因此最高时间复杂度: O ( n ) O(n) O(n),可以过。

注意: 数论题目中,开 long long 已经是常识,所以很有必要写一条 #define int long long 避免犯错。

AC Code

C + + \text{C}++ C++

#include <iostream>
#define int long longusing namespace std;const int N = 1e7 + 10;int n;
int primes[N], cnt;
int euler[N], s[N];
bool st[N];void get_eulers(int n)
{euler[1] = 1;for (int i = 2; i <= n; i ++ ){if (!st[i]){primes[cnt ++ ] = i;euler[i] = i - 1;}for (int j = 0; primes[j] <= n / i; j ++ ){int t = primes[j] * i;st[t] = true;if (i % primes[j] == 0){euler[t] = euler[i] * primes[j];break;}euler[t] = euler[i] * (primes[j] - 1);}}
}main()
{scanf("%lld", &n);get_eulers(n); // 线性筛质数和欧拉函数for (int i = 1; i <= n; i ++ ) // 预处理欧拉函数前缀和s[i] = s[i - 1] + euler[i];int res = 0;for (int i = 0; i < cnt; i ++ ) // 枚举 n 以内的质数res += 2 * s[n / primes[i]] - 1;printf("%lld\n", res);return 0;
}

228aa7bed3e021faf24cf8560d3e47bb.gif

最后,如果觉得对您有帮助的话,点个赞再走吧!

相关文章:

AcWing算法提高课-5.5.2最大公约数

宣传一下 算法提高课整理 CSDN个人主页&#xff1a;更好的阅读体验 原题链接 题目描述 给定整数 N N N&#xff0c;求 1 ≤ x , y ≤ N 1 \le x,y \le N 1≤x,y≤N 且 gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y) 为素数的数对 ( x , y ) (x,y) (x,y) 有多少对。 输入格式 输…...

Kubernetes-CKA考题详解

Kubernetes-CKA考题详解 考前须知:考试环境说明第一题:RBAC(4%)第二题:指定node设置为不可用(4%)第三题:升级kubernetes节点(7%)第四题:etcd备份还原(7%)第五题:创建NetworkPolicy(7%)第六题:创建svc(7%)第七题:创建ingress资源(7%)第八题:扩展deployme…...

不同版本.net引用同一个项目

项目文件.csproj文件内容如下&#xff1a; 重点是&#xff1a;不能有其他的 netstandard2;net40;net45;net46;net6 <Project Sdk"Microsoft.NET.Sdk"><PropertyGroup><TargetFrameworks>netstandard2;net40;net45;net46;net6</TargetFrame…...

软件开发企业SDL安全培训案例

1.背景 随着计算机技术的发展、internet及mobile应用的普遍使用,软件安全像功能、性能、稳定性一样是计算机系统的一个非常重要部分。没有安全的软件,任何美好的功能都是徒劳的,没有安全的软件,公司的机密数据、客户隐私、系统的可靠性都得不到保障.如何有效评估、开发安全、可…...

ide-eval-resetter jar包下载、源码、使用介绍

如果你在找ide-eval-resetter插件&#xff0c;这里告诉你&#xff0c;2021.3版本开始该插件正式失效。 如果你安装的JB产品版本低于2021.3版本&#xff0c;你确定要找ide-eval-resetter&#xff0c;下面提供相关链接希望对你有帮助。 ide-eval-resetter源码&#xff1a; Githu…...

数据压缩算法一览

文章首发地址 Huffman编码&#xff1a; Huffman编码是一种基于字符频率的无损压缩算法。它将出现频率较高的字符用较短的编码表示&#xff0c;出现频率较低的字符用较长的编码表示&#xff0c;从而实现压缩。Lempel-Ziv-Welch (LZW)&#xff1a; LZW是一种基于字典的无损压缩算…...

使用Rust开发命令行工具

生成二进制文件&#xff0c;将其扔到环境变量的path下即可~ 用rust打造实时天气命令行工具[1] 找到合适的API 使用该api[2] 如请求 api.openweathermap.org/data/2.5/weather?qBeijing&appidyour_key: { "coord": { "lon": 116.3972, "lat&quo…...

CentOS中Oracle11g进程有哪些

最近遇到Oracle数据库运行过程实例进程由于某种原因导致中止的问题&#xff0c;专门看了下正常Oracle数据库启动后的进程有哪些&#xff0c;查阅资料了解了下各进程的作用&#xff0c;记录如下。 oracle 3032 1 0 07:36 ? 00:00:00 ora_pmon_orcl oracle …...

WebRTC之FEC前向纠错协议

FEC前向纠错用于丢包恢复&#xff0c;对媒体包进行异或或其他算法生成冗余包进行发送。如果接收端出现丢包&#xff0c;可以通过冗余包恢复出原始的媒体包。FEC的代价是增加码率带宽&#xff0c;所以一般会根据网络状况、丢包率来动态调整FEC冗余系数&#xff0c;也会结合NACK/…...

软件测试技术分享丨使用Postman搞定各种接口token实战

现在许多项目都使用jwt来实现用户登录和数据权限&#xff0c;校验过用户的用户名和密码后&#xff0c;会向用户响应一段经过加密的token&#xff0c;在这段token中可能储存了数据权限等&#xff0c;在后期的访问中&#xff0c;需要携带这段token&#xff0c;后台解析这段token才…...

GBU812-ASEMI逆变器专用整流桥GBU812

编辑&#xff1a;ll GBU812-ASEMI逆变器专用整流桥GBU812 型号&#xff1a;GBU812 品牌&#xff1a;ASEMI 芯片个数&#xff1a;4 封装&#xff1a;GBU-4 恢复时间&#xff1a;&#xff1e;50ns 工作温度&#xff1a;-55C~150C 浪涌电流&#xff1a;200A 正向电流&…...

D2007在64位Win7出现 delphi 2007 assertion failure thread32.cpp 的解决办法

Delphi2007 原来安装在Win7 下 运行正常&#xff0c; 自从升级到Win10 &#xff0c;新建工程运行然后关闭报错&#xff0c; 报错信息如下&#xff1a; --------------------------- bds.exe - bordbk105N.dll --------------------------- Assertion failure: "(!"S…...

windows10 docker 安装在D盘

win10安装docker后发现c盘空间急速减少&#xff0c;360管家查看发现images镜像安装在C盘&#xff0c;于是重装docker desktop以为在安装过程中能够选择&#xff0c;遗憾的是没有提供选择权限&#xff0c;默认直接就安装到了c盘。 desktop 迁移 百度得知可以将c盘的docker安装…...

Scikit-learn强化学习代码批注及相关练习

一、游戏介绍 木棒每保持平衡1个时间步&#xff0c;就得到1分。每一场游戏的最高得分为200分每一场游戏的结束条件为木棒倾斜角度大于41.8或者已经达到200分。最终获胜条件为最近100场游戏的平均得分高于195。代码中env.step&#xff08;&#xff09;&#xff0c;的返回值就分…...

执行jmeter端口不够用报错(Address not available)

执行jmeter端口不够用报错(Address not available) linux解决方案 // 增加本地端口范围 echo 1024 65000 > /proc/sys/net/ipv4/ip_local_port_range// 启用快速回收TIME_WAIT套接字 sudo sysctl -w net.ipv4.tcp_tw_recycle 1// 启用套接字的重用 sudo sysctl -w net.ipv4.…...

【Go Web 篇】从零开始:构建最简单的 Go 语言 Web 服务器

随着互联网的迅速发展&#xff0c;Web 服务器成为了连接世界的关键组件之一。而在现代编程语言中&#xff0c;Go 语言因其卓越的性能和并发能力而备受青睐。本篇博客将带你从零开始&#xff0c;一步步构建最简单的 Go 语言 Web 服务器&#xff0c;让你对 Go 语言的 Web 开发能力…...

Android系统-性能-优化概述

目录 引言&#xff1a; APP优化&#xff1a; 网络优化&#xff1a; 内存优化&#xff1a; 卡顿优化&#xff1a; 引言&#xff1a; 先大概对Android性能优化做一个简单分类和梳理。由于性能影响因素多&#xff0c;比如本文分类的APP&#xff0c;内存&#xff0c;网络&…...

用Cmake build OpenCV后,在VS中查看OpenCV源码的方法(环境VS2022+openCV4.8.0) Part II

用Cmake build OpenCV后&#xff0c;在VS中查看OpenCV源码的方法 Part II 用Cmake build OpenCV后&#xff0c;在VS中查看OpenCV源码的方法&#xff08;环境VS2022openCV4.8.0&#xff09; Part I_松下J27的博客-CSDN博客 在上一篇文章中&#xff0c;我用cmake成功的生成了ope…...

深度学习5:长短期记忆网络 – Long short-term memory | LSTM

目录 什么是 LSTM&#xff1f; LSTM的核心思路 什么是 LSTM&#xff1f; 长短期记忆网络——通常被称为 LSTM&#xff0c;是一种特殊的RNN&#xff0c;能够学习长期依赖性。由 Hochreiter 和 Schmidhuber&#xff08;1997&#xff09;提出的&#xff0c;并且在接下来的工作中…...

LabVIEW开发灭火器机器人

LabVIEW开发灭火器机器人 如今&#xff0c;自主机器人在行业中有着巨大的需求。这是因为它们根据不同情况的适应性。由于消防员很难进入高风险区域&#xff0c;自主机器人出现了。该机器人具有自行检测火灾的能力&#xff0c;并通过自己的决定穿越路径。 由于消防安全是主要问…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、基础概念 1. 哈希核心思想&#xff1a; 哈希函数的作用&#xff1a;通过此函数建立一个Key与存储位置之间的映射关系。理想目标&#xff1a;实现…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...