AcWing算法提高课-5.5.2最大公约数
宣传一下 算法提高课整理
CSDN个人主页:更好的阅读体验
原题链接
题目描述
给定整数 N N N,求 1 ≤ x , y ≤ N 1 \le x,y \le N 1≤x,y≤N 且 gcd ( x , y ) \gcd(x,y) gcd(x,y) 为素数的数对 ( x , y ) (x,y) (x,y) 有多少对。
输入格式
输入一个整数 N N N。
输出格式
输出一个整数,表示满足条件的数对数量。
数据范围
1 ≤ N ≤ 1 0 7 1 \le N \le 10^7 1≤N≤107
输入样例:
4
输出样例:
4
思路
首先考虑暴力。
本题答案为:
∑ i = 1 n ∑ j = 1 n ∑ p ∈ P [ gcd ( i , j ) = p ] \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{p \in \mathbb{P}}^{}[\gcd(i,j)=p] i=1∑nj=1∑np∈P∑[gcd(i,j)=p]
把 gcd ( i , j ) = p \gcd(i,j)=p gcd(i,j)=p 变成 gcd ( i , j ) = 1 \gcd(i,j)=1 gcd(i,j)=1 然后把 p p p 除到前面的 n n n 里。
即: ∑ p ∈ P ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ n p ⌋ [ gcd ( i , j ) = 1 ] \sum_{p \in \mathbb{P}}^{}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{p}\rfloor}[\gcd(i,j)=1] p∈P∑i=1∑⌊pn⌋j=1∑⌊pn⌋[gcd(i,j)=1]
和 5.5.1 可见的点 相同,我们可以将以上代数式变换为:
2 × ∑ p ∈ P ∑ i = 1 ⌊ n p ⌋ φ ( i ) + 1 2 \times\sum_{p \in \mathbb{P}}^{}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\varphi(i)+1 2×p∈P∑i=1∑⌊pn⌋φ(i)+1
这里不再进行推导,读者可以自行点击上方链接进行阅读。
此时进行计算,时间复杂度近似为 O ( n 2 ln n ) \large{O(\frac{n^2}{\ln n})} O(lnnn2),将 n = 1 0 7 n=10^7 n=107 代入计算,发现超过 1 0 8 10^8 108,在 1 s 1s 1s 的时限内会 TLE \text{TLE} TLE。
我们看到 ∑ i = 1 n p φ ( n p ) \large\sum_{i=1}^{\frac{n}{p}}\varphi(\frac{n}{p}) ∑i=1pnφ(pn) 可以考虑预处理欧拉函数前缀和。
假设 s k = ∑ i = 1 k φ ( i ) \large{s_k=\sum_{i=1}^{k}\varphi(i)} sk=∑i=1kφ(i),则原式可化为:
2 × ∑ p ∈ P s ⌊ n p ⌋ + 1 \large{2 \times\sum_{p \in \mathbb{P}}^{}s_{\lfloor\frac{n}{p}\rfloor}+1} 2×p∈P∑s⌊pn⌋+1
此时我们枚举 n n n 的所有质因数进行计算就不会超时。
算法时间复杂度
预处理 φ ( i ) \varphi(i) φ(i): O ( n ) O(n) O(n);
预处理 s i s_i si: O ( n ) O(n) O(n);
计算结果: O ( n ln n ) \large{O(\frac{n}{\ln n})} O(lnnn)。
因此最高时间复杂度: O ( n ) O(n) O(n),可以过。
注意: 数论题目中,开 long long
已经是常识,所以很有必要写一条 #define int long long
避免犯错。
AC Code
C + + \text{C}++ C++
#include <iostream>
#define int long longusing namespace std;const int N = 1e7 + 10;int n;
int primes[N], cnt;
int euler[N], s[N];
bool st[N];void get_eulers(int n)
{euler[1] = 1;for (int i = 2; i <= n; i ++ ){if (!st[i]){primes[cnt ++ ] = i;euler[i] = i - 1;}for (int j = 0; primes[j] <= n / i; j ++ ){int t = primes[j] * i;st[t] = true;if (i % primes[j] == 0){euler[t] = euler[i] * primes[j];break;}euler[t] = euler[i] * (primes[j] - 1);}}
}main()
{scanf("%lld", &n);get_eulers(n); // 线性筛质数和欧拉函数for (int i = 1; i <= n; i ++ ) // 预处理欧拉函数前缀和s[i] = s[i - 1] + euler[i];int res = 0;for (int i = 0; i < cnt; i ++ ) // 枚举 n 以内的质数res += 2 * s[n / primes[i]] - 1;printf("%lld\n", res);return 0;
}
最后,如果觉得对您有帮助的话,点个赞再走吧!
相关文章:

AcWing算法提高课-5.5.2最大公约数
宣传一下 算法提高课整理 CSDN个人主页:更好的阅读体验 原题链接 题目描述 给定整数 N N N,求 1 ≤ x , y ≤ N 1 \le x,y \le N 1≤x,y≤N 且 gcd ( x , y ) \gcd(x,y) gcd(x,y) 为素数的数对 ( x , y ) (x,y) (x,y) 有多少对。 输入格式 输…...
Kubernetes-CKA考题详解
Kubernetes-CKA考题详解 考前须知:考试环境说明第一题:RBAC(4%)第二题:指定node设置为不可用(4%)第三题:升级kubernetes节点(7%)第四题:etcd备份还原(7%)第五题:创建NetworkPolicy(7%)第六题:创建svc(7%)第七题:创建ingress资源(7%)第八题:扩展deployme…...

不同版本.net引用同一个项目
项目文件.csproj文件内容如下: 重点是:不能有其他的 netstandard2;net40;net45;net46;net6 <Project Sdk"Microsoft.NET.Sdk"><PropertyGroup><TargetFrameworks>netstandard2;net40;net45;net46;net6</TargetFrame…...

软件开发企业SDL安全培训案例
1.背景 随着计算机技术的发展、internet及mobile应用的普遍使用,软件安全像功能、性能、稳定性一样是计算机系统的一个非常重要部分。没有安全的软件,任何美好的功能都是徒劳的,没有安全的软件,公司的机密数据、客户隐私、系统的可靠性都得不到保障.如何有效评估、开发安全、可…...
ide-eval-resetter jar包下载、源码、使用介绍
如果你在找ide-eval-resetter插件,这里告诉你,2021.3版本开始该插件正式失效。 如果你安装的JB产品版本低于2021.3版本,你确定要找ide-eval-resetter,下面提供相关链接希望对你有帮助。 ide-eval-resetter源码: Githu…...
数据压缩算法一览
文章首发地址 Huffman编码: Huffman编码是一种基于字符频率的无损压缩算法。它将出现频率较高的字符用较短的编码表示,出现频率较低的字符用较长的编码表示,从而实现压缩。Lempel-Ziv-Welch (LZW): LZW是一种基于字典的无损压缩算…...

使用Rust开发命令行工具
生成二进制文件,将其扔到环境变量的path下即可~ 用rust打造实时天气命令行工具[1] 找到合适的API 使用该api[2] 如请求 api.openweathermap.org/data/2.5/weather?qBeijing&appidyour_key: { "coord": { "lon": 116.3972, "lat&quo…...

CentOS中Oracle11g进程有哪些
最近遇到Oracle数据库运行过程实例进程由于某种原因导致中止的问题,专门看了下正常Oracle数据库启动后的进程有哪些,查阅资料了解了下各进程的作用,记录如下。 oracle 3032 1 0 07:36 ? 00:00:00 ora_pmon_orcl oracle …...

WebRTC之FEC前向纠错协议
FEC前向纠错用于丢包恢复,对媒体包进行异或或其他算法生成冗余包进行发送。如果接收端出现丢包,可以通过冗余包恢复出原始的媒体包。FEC的代价是增加码率带宽,所以一般会根据网络状况、丢包率来动态调整FEC冗余系数,也会结合NACK/…...

软件测试技术分享丨使用Postman搞定各种接口token实战
现在许多项目都使用jwt来实现用户登录和数据权限,校验过用户的用户名和密码后,会向用户响应一段经过加密的token,在这段token中可能储存了数据权限等,在后期的访问中,需要携带这段token,后台解析这段token才…...

GBU812-ASEMI逆变器专用整流桥GBU812
编辑:ll GBU812-ASEMI逆变器专用整流桥GBU812 型号:GBU812 品牌:ASEMI 芯片个数:4 封装:GBU-4 恢复时间:>50ns 工作温度:-55C~150C 浪涌电流:200A 正向电流&…...
D2007在64位Win7出现 delphi 2007 assertion failure thread32.cpp 的解决办法
Delphi2007 原来安装在Win7 下 运行正常, 自从升级到Win10 ,新建工程运行然后关闭报错, 报错信息如下: --------------------------- bds.exe - bordbk105N.dll --------------------------- Assertion failure: "(!"S…...

windows10 docker 安装在D盘
win10安装docker后发现c盘空间急速减少,360管家查看发现images镜像安装在C盘,于是重装docker desktop以为在安装过程中能够选择,遗憾的是没有提供选择权限,默认直接就安装到了c盘。 desktop 迁移 百度得知可以将c盘的docker安装…...

Scikit-learn强化学习代码批注及相关练习
一、游戏介绍 木棒每保持平衡1个时间步,就得到1分。每一场游戏的最高得分为200分每一场游戏的结束条件为木棒倾斜角度大于41.8或者已经达到200分。最终获胜条件为最近100场游戏的平均得分高于195。代码中env.step(),的返回值就分…...

执行jmeter端口不够用报错(Address not available)
执行jmeter端口不够用报错(Address not available) linux解决方案 // 增加本地端口范围 echo 1024 65000 > /proc/sys/net/ipv4/ip_local_port_range// 启用快速回收TIME_WAIT套接字 sudo sysctl -w net.ipv4.tcp_tw_recycle 1// 启用套接字的重用 sudo sysctl -w net.ipv4.…...

【Go Web 篇】从零开始:构建最简单的 Go 语言 Web 服务器
随着互联网的迅速发展,Web 服务器成为了连接世界的关键组件之一。而在现代编程语言中,Go 语言因其卓越的性能和并发能力而备受青睐。本篇博客将带你从零开始,一步步构建最简单的 Go 语言 Web 服务器,让你对 Go 语言的 Web 开发能力…...
Android系统-性能-优化概述
目录 引言: APP优化: 网络优化: 内存优化: 卡顿优化: 引言: 先大概对Android性能优化做一个简单分类和梳理。由于性能影响因素多,比如本文分类的APP,内存,网络&…...

用Cmake build OpenCV后,在VS中查看OpenCV源码的方法(环境VS2022+openCV4.8.0) Part II
用Cmake build OpenCV后,在VS中查看OpenCV源码的方法 Part II 用Cmake build OpenCV后,在VS中查看OpenCV源码的方法(环境VS2022openCV4.8.0) Part I_松下J27的博客-CSDN博客 在上一篇文章中,我用cmake成功的生成了ope…...

深度学习5:长短期记忆网络 – Long short-term memory | LSTM
目录 什么是 LSTM? LSTM的核心思路 什么是 LSTM? 长短期记忆网络——通常被称为 LSTM,是一种特殊的RNN,能够学习长期依赖性。由 Hochreiter 和 Schmidhuber(1997)提出的,并且在接下来的工作中…...

LabVIEW开发灭火器机器人
LabVIEW开发灭火器机器人 如今,自主机器人在行业中有着巨大的需求。这是因为它们根据不同情况的适应性。由于消防员很难进入高风险区域,自主机器人出现了。该机器人具有自行检测火灾的能力,并通过自己的决定穿越路径。 由于消防安全是主要问…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...

Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...

篇章二 论坛系统——系统设计
目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...