当前位置: 首页 > news >正文

深度学习5:长短期记忆网络 – Long short-term memory | LSTM

目录

什么是 LSTM?

LSTM的核心思路


什么是 LSTM?

长短期记忆网络——通常被称为 LSTM,是一种特殊的RNN,能够学习长期依赖性。由 Hochreiter 和 Schmidhuber(1997)提出的,并且在接下来的工作中被许多人改进和推广。LSTM 在各种各样的问题上表现非常出色,现在被广泛使用。

LSTM 被明确设计用来避免长期依赖性问题。长时间记住信息实际上是 LSTM 的默认行为,而不是需要努力学习的东西!

所有递归神经网络都具有神经网络的链式重复模块。在标准的 RNN 中,这个重复模块具有非常简单的结构,例如只有单个 tanh 层。

RNN中,只有单个tanh层

LSTM 也具有这种类似的链式结构,但重复模块具有不同的结构。不是一个单独的神经网络层,而是四个,并且以非常特殊的方式进行交互。

 

不要担心细节。稍后我们将逐步浏览 LSTM 的图解。现在,让我们试着去熟悉我们将使用的符号。

不同符号的含义

在上面的图中,每行包含一个完整的向量,从一个节点的输出到其他节点的输入。粉色圆圈表示逐点运算,如向量加法;而黄色框表示学习的神经网络层。行合并表示串联,而分支表示其内容正在被复制,并且副本将转到不同的位置。

LSTM的核心思路

LSTM 的关键是细胞状态,即图中上方的水平线。

细胞状态有点像传送带。它贯穿整个链条,只有一些次要的线性交互作用。信息很容易以不变的方式流过。

LSTM 的关键是细胞状态,即图中上方的水平线

LSTM 可以通过所谓“门”的精细结构向细胞状态添加或移除信息。

门可以选择性地以让信息通过。它们由 S 形神经网络层和逐点乘法运算组成。

LSTM 可以通过所谓“门”的精细结构向细胞状态添加或移除信息

S 形网络的输出值介于 0 和 1 之间,表示有多大比例的信息通过。0 值表示“没有信息通过”,1 值表示“所有信息通过”。

一个 LSTM 有三种这样的门用来保持和控制细胞状态。

长短期记忆人工神经网络(Long-Short Term Memory,LSTM)

由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。

LSTM的表现通常比时间递归神经网络及隐马尔科夫模型(HMM)更好,比如用在不分段连续手写识别上。2009年,用LSTM构建的人工神经网络模型赢得过ICDAR手写识别比赛冠军。LSTM还普遍用于自主语音识别,2013年运用TIMIT自然演讲数据库达成17.7%错误率的纪录。作为非线性模型,LSTM可作为复杂的非线性单元用于构造更大型深度神经网络。

长短期记忆(LSTM)单位是递归神经网络(RNN)的单位。由LSTM单元组成的RNN通常称为LSTM网络(或仅称为LSTM)。公共LSTM单元由单元,输入门,输出门和忘记门组成。该单元记住任意时间间隔内的值,并且三个门控制进出单元的信息流。

LSTM网络非常适合基于时间序列数据进行分类,处理和预测,因为在时间序列中的重要事件之间可能存在未知持续时间的滞后。开发LSTM是为了处理在训练传统RNN时可能遇到的爆炸和消失的梯度问题。对于间隙长度的相对不敏感性是LSTM相对于RNN,隐马尔可夫模型和其他序列学习方法在许多应用中的优势。

相关文章:

深度学习5:长短期记忆网络 – Long short-term memory | LSTM

目录 什么是 LSTM? LSTM的核心思路 什么是 LSTM? 长短期记忆网络——通常被称为 LSTM,是一种特殊的RNN,能够学习长期依赖性。由 Hochreiter 和 Schmidhuber(1997)提出的,并且在接下来的工作中…...

LabVIEW开发灭火器机器人

LabVIEW开发灭火器机器人 如今,自主机器人在行业中有着巨大的需求。这是因为它们根据不同情况的适应性。由于消防员很难进入高风险区域,自主机器人出现了。该机器人具有自行检测火灾的能力,并通过自己的决定穿越路径。 由于消防安全是主要问…...

1.2 Kali Linux的网络配置

前言 最新文章请见此处,持续更新,敬请订阅!https://blog.csdn.net/algorithmyyds/category_12418682.html 网络在如今的社会已是十分重要的媒介,如果没有网络,很多事情将难以办成。渗透测试也是一样——毕竟在攻击机…...

目标检测的训练过程

数据集准备(Dataset preparation): 收集或创建带有注释的数据集,其中包括图像或帧以及标注,指定了其中物体的位置和类别。标注通常包括边界框坐标(x、y、宽度、高度)和相应的类别标签。数据预处理: 将图像调整为模型能…...

软考高级系统架构设计师系列论文七十七:论软件产品线技术

软考高级系统架构设计师系列论文七十七:论软件产品线技术 一、摘要二、正文三、总结一、摘要 本人在测井行业的一个国有企业软件开发部工作,从2021年初开始,我陆续参加了多个测井软件开发项目,这些项目都是测井行业资料处理解释软件,具有很强的行业特征,其开发方向和应用…...

基于大语言模型知识问答应用落地实践 – 知识库构建(上)

01 背景介绍 随着大语言模型效果明显提升,其相关的应用不断涌现呈现出越来越火爆的趋势。其中一种比较被广泛关注的技术路线是大语言模型(LLM)知识召回(Knowledge Retrieval)的方式,在私域知识问答方面可以…...

一文1500字从0到1搭建 Jenkins 自动化测试平台

Jenkins 自动化测试平台的作用 自动化构建平台的执行流程(目标)是: 我们将代码提交到代码托管工具上,如github、gitlab、gitee等。 1、Jenkins要能够检测到我们的提交。 2、Jenkins检测到提交后,要自动拉取代码&#x…...

前端面试:【实际项目经验】团队协作、代码管理和Git命令梳理

在现代软件开发中,团队协作、代码管理和版本控制是至关重要的方面。本文将分享一些实际项目经验,重点关注团队协作、代码管理,以及Git版本控制的关键命令和最佳实践。 团队协作: 明确角色和责任: 在项目开始阶段&#…...

关于异数OS服务器CPU效能分析工具

该工具发布背景 近年来,国产服务器CPU产业的逐渐发展,但由于专业性较差,与国外存在40年以上技术差距,一些服务器CPU厂商利用信息差来制造一些非专业的数据夸大并虚假宣传混淆视听,成功达到劣币驱良币的目标&#xff0…...

十四、pikachu之XSS

文章目录 1、XSS概述2、实战2.1 反射型XSS(get)2.2 反射型XSS(POST型)2.3 存储型XSS2.4 DOM型XSS2.5 DOM型XSS-X2.6 XSS之盲打2.7 XSS之过滤2.8 XSS之htmlspecialchars2.9 XSS之href输出2.10 XSS之JS输出 1、XSS概述 Cross-Site S…...

五分钟了解最短路径寻路算法:Dijkstra 迪杰斯特拉

最短路径查找算法 寻路算法在生活中应用十分常见。本文实现的是关于图的最短路径查找算法。 该算法比较常见于游戏和室内地图导航。 实现 例子:几个节点之间,相连接的线段有固定长度,该长度决就是通过代价。查找到花费最少的路径。该图结构…...

【ARM】Day8 中断

1. 思维导图 2. 实验要求: 实现KEY1/LEY2/KE3三个按键,中断触发打印一句话,并且灯的状态取反 key1 ----> LED3灯状态取反 key2 ----> LED2灯状态取反 key3 ----> LED1灯状态取反 key3.h #ifndef __KEY3_H__ #define __KEY3_H__#in…...

大数据Flink(六十八):SQL Table 的基本概念及常用 API

文章目录 SQL & Table 的基本概念及常用 API 一、​​​​​​​一个 Table API\SQL任务的代码结构...

算法练习- 其他算法练习6

文章目录 数字序列比大小最佳植树距离文艺汇演计算误码率二维伞的雨滴效应阿里巴巴找黄金宝箱4 数字序列比大小 A、B两人一人一个整数数组,长度相等,元素随即;两人随便拿出一个元素(弹出),比较大小&#x…...

ModaHub魔搭社区:WinPlan经营大脑管理中心

角色权限 展示设置的角色,及对应的成员及权限点。角色、成员、权限点可自由配置;管理员的角色不可删除、权限点默认全部不可更改。 WinPlan决策系统 算力 阿里云 腾讯云 AWS亚马逊 框架 业务数据基座 WinPlan垂直大模型 模型 分...

滑动窗口系列4-Leetcode322题零钱兑换-限制张数-暴力递归到动态规划再到滑动窗口

这个题目是Leecode322的变种,322原题如下: 我们这里的变化是把硬币变成可以重复的,并且只有coins数组中给出的这么多的金币,也就是说有数量限制: package dataStructure.leecode.practice;import java.util.Arrays; i…...

Nginx全局配置

一、修改启动进程数 worker_processes 1; #允许的启动工作进程数数量,和你真实的cpu数量有关 1 worker_processes auto; #如果设置为auto 就是你真实的cpu数量 ps axo pid,cmd,psr,ni|grep nginx #可以看到 nginx的 worker数量 二、日制分割 [rootyuji ~]#…...

VUE笔记(四)vue的组件

一、组件的介绍 1、组件的作用 整个项目都是由组件组成 可以让代码复用:相似结构代码可以做成一个组件,直接进行调用就可以使用,提高代码复用性 可以让代码具有可维护性(只要改一处,整个引用的部分全部都变&#xf…...

菜鸟教程《Python 3 教程》笔记

菜鸟教程《Python 3 教程》笔记 0 写在前面1 基本数据类型1.1 Number(数字)1.2 String(字符串)1.3 bool(布尔类型)1.4 List(列表)1.5 Tuple(元组)1.6 Set&…...

JAVA学习-愚见

JAVA学习-愚见 分享一下Java的学习路线,仅供参考【本人亲测,真实有效】 1、尽可能推荐较新的课程 2、大部分视频在B站上直接搜关键词就行【自学,B大的学生】 文章目录 JAVA学习-愚见前期准备Java基础课程练手项目 数据库JavaWeb前端基础 Vue…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

Kafka入门-生产者

生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...