MySQL—MySQL的NULL值是怎么存放的
一、引言
1、MySQL数据存放在哪个文件?
创建一个数据库会产生三种格式的文件,分别是.opt格式、.frm格式、.ibd格式。
opt格式:用来存储当前数据库的默认字符集和字符校验规则。
frm格式:该文件是用来保存每个表的元数据信息的,主要包含表结构定义。
ibd格式:存放数据库的数据
2、表空间文件的结构是什么样的?
表空间由段(segment)、区(extent)、页(page)、行(row)组成
行:数据库表的记录都是按行进行存放的,每行记录根据不同行格式,有不同的存储结构。
页:InnoDB 的数据是按「页」为单位来读写的,每页大小默认16k
区:在表中数据量大的时候,为某个索引分配空间的时候就不再按照页为单位分配了,而是按照区为单位分配。每个区的大小为 1MB,对于 16KB 的页来说,连续的 64 个页会被划为一个区,这样就使得链表中相邻的页的物理位置也相邻,就能使用顺序 I/O 了。
段:表空间是由各个段组成的,段是由多个区组成的。可分为数据段、索引段和回滚段等。
二、innodb的compact行格式
innodb的compact的行格式,如下所示

可以看到行格式可以分为记录的额外信息和记录的真实数据,记录的真实数据就不再赘述了,就是记录真实的存放的数据,但是还存放三个隐藏列:row_id, trx_id, roll_pointer!
记录的额外信息分为:记录头信息、NULL值列表、变长字段长度列表
记录头信息:里面有delete_mask(标记是否被删除)、next_record(标记下一条记录的位置)、record_type(表示当前记录类型)。
NULL列表:如果存在允许 NULL 值的列,则每个列对应一个二进制位,二进制位按照列的顺序逆序排列。如果NULL值列大于8个,就需要两个字节存储
变长字段长度列表:在存储数据的时候,也要把数据占用的大小存起来,存到变长字段长度列表里面,读取数据的时候才能根据它去读取对应长度的数据。其他 TEXT、BLOB 等变长字段也是这么实现的。
三、行溢出后,MySQL是怎么处理的
MySQL 中磁盘和内存交互的基本单位是页,一个页的大小一般是 16KB,也就是 16384字节,而一个 varchar(n) 类型的列最多可以存储 65532字节,一些大对象如 TEXT、BLOB 可能存储更多的数据,这时一个页可能就存不了一条记录。这个时候就会发生行溢出,多的数据就会存到另外的溢出页中。 然后会在行中用20个字节来存储溢出页的地址!
四、一些问题的回答
MySQL 的 NULL 值是怎么存放的?
MySQL 的 Compact 行格式中会用NULL值列表来标记值为 NULL 的列,NULL 值并不会存储在行格式中的真实数据部分。NULL值列表会占用 1 字节空间,当表中所有字段都定义成 NOT NULL,行格式中就不会有 NULL值列表,这样可节省 1 字节的空间。
MySQL 怎么知道 varchar(n) 实际占用数据的大小?
MySQL的compact格式会有一个变长字段列表进行存储实际占用数据的大小
varchar(n) 中 n 最大取值为多少?
最大取值为65535-NULL值列表占用字节数-变长字段长度列表所占字节数
行溢出后,MySQL 是怎么处理的?
Compact 行格式针对行溢出的处理是这样的:当发生行溢出时,在记录的真实数据处只会保存该列的一部分数据,而把剩余的数据放在溢出页中,然后真实数据处用 20 字节存储指向溢出页的地址,从而可以找到剩余数据所在的页。
相关文章:
MySQL—MySQL的NULL值是怎么存放的
一、引言 1、MySQL数据存放在哪个文件? 创建一个数据库会产生三种格式的文件,分别是.opt格式、.frm格式、.ibd格式。 opt格式:用来存储当前数据库的默认字符集和字符校验规则。 frm格式:该文件是用来保存每个表的元数据信息的&…...
sql server删除历史数据
1 函数 datediff函数: DATEDIFF ( datepart , startdate , enddate )datepart的取值可以是year,quarter,Month,dayofyear,Day,Week,Hour,minute,second,millisecond startdate 是从 enddate 减去。如果 startdate 比 enddate 晚,返回负值。 2 例子 删除2023年以…...
目标检测项目中,使用python+xml.etree.ElementTree修改xml格式标注文件中的类别名称
需求: 数据集的数据增强中,有时需要将xml标注文件中的类别做修改为新类别,或者将几个类别合并为一个类别。 解决方法: 使用pythonimport xml.etree.ElementTree将xml标注文件中的类别名称做修改。代码如下&…...
最新域名和子域名信息收集技术
域名信息收集 1.WHOIS查询 WHOIS是一个标准的互联网协议,可用于收集网络注册信息、注册域名﹑IP地址等信息。简单来说,WHOIS就是一个用于查询域名是否已被注册及注册域名详细信息的数据库(如域名所有人、域名注册商)…...
C语言基础之——指针(上)
前言:小伙伴们又见面啦!本期内容,博主将展开讲解有关C语言中指针的上半部分基础知识,一起学习起来叭!!! 目录 一.什么是指针 二.指针类型 1.指针的解引用 2.指针-整数 三.野指针 1.野指针…...
构建 NodeJS 影院预订微服务并使用 docker 部署(04/4)
一、说明 构建一个微服务的电影网站,需要Docker、NodeJS、MongoDB,这样的案例您见过吗?如果对此有兴趣,您就继续往下看吧。 我们前几章的快速回顾 第一篇文章介绍了微服务架构模式,并讨论了使用微服务的优缺点。第二篇…...
SpringBootWeb案例 Part3
目录 1. 新增员工 1.1 需求 1.2 接口文档 1.3 思路分析 PostMapping RequestBody //把前端传递的JSON数据填充到实体类中 1.4 功能开发 1.5 功能测试 1.6 前后端联调 2. 文件上传 2.1 文件上传简介 Spring中提供了一个API:MultipartFile,使…...
C++中using 用法
C中的 using 关键字用于引入命名空间、类型别名和模板别名。以下是 using 关键字的几种常见用法及其中文解析: 1. 引入命名空间: using namespace std; 中文解析:引入 std 命名空间,使得命名空间中的成员在当前作用域内可直接使…...
window下jdk安装及更换jdk版本的一些问题。
目录 jdk安装jdk的选择。oracle的jdk怎么安装。openjdk怎么安装。 jdk的版本控制。更换jdk的一些问题。 jdk安装 jdk的选择。 目前有两种可选的jdk,oracle的和开源的Openjdk,这两种jdk的区别可以自行查阅,就结果而言,openjdk开源…...
GPT4模型架构的泄漏与分析
迄今为止,GPT4 模型是突破性的模型,可以免费或通过其商业门户(供公开测试版使用)向公众提供。它为许多企业家激发了新的项目想法和用例,但对参数数量和模型的保密却扼杀了所有押注于第一个 1 万亿参数模型到 100 万亿参…...
GEE/PIE遥感大数据处理与典型案例丨数据整合Reduce、云端数据可视化、数据导入导出及资产管理、机器学习算法等
目录 专题一:初识GEE和PIE遥感云平台 专题二:GEE和PIE影像大数据处理基础 专题三:数据整合Reduce 专题四:云端数据可视化 专题五:数据导入导出及资产管理 专题六:机器学习算法 专题七:…...
STM32--DMA
文章目录 DMA简介DMA特性 DMA框图DMA基本结构DMA请求数据宽度对齐DMA数据转运工程DMAADC多通道 DMA简介 直接存储器存取(DMA)用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。无须CPU干预,数据可以通过DMA快速地移动,这就节省了CPU的…...
mongodb和redis的用途
MongoDB和Redis都是常见的NoSQL数据库,它们有不同的特点和用途。 MongoDB的主要特点和用途: 数据存储:MongoDB是一种面向文档的数据库,以JSON样式的BSON文档(二进制JSON)的形式存储数据。它支持复杂的数据…...
【动手学深度学习】--18.图像增广
文章目录 图像增广1.常用的图像增广方法1.1翻转和裁剪1.2改变颜色1.3结合多种图像增广方法 2.使用图像增广进行训练3.训练 图像增广 官方笔记:图像增广 学习视频:数据增广【动手学深度学习v2】 图像增广在对训练图像进行一系列的随机变化之后ÿ…...
数据分析--统计学知识
描述型统计 描述统计 1.集中趋势 :众数、平均数、分位数 2.离散趋势: 极值(max)、极差(max-min)、平均差、方差、标准差、分位差 3.分布:峰泰、偏度 推理型统计 概率分布:离散型…...
matlab 计算点云协方差矩阵
目录 一、概述1、算法概述2、主要函数二、代码示例三、结果展示四、参数解析输入参数输出参数五、参考链接本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、概述...
python进阶之图像编程 pillow扩展库
一、概述 1.1pillow简介 Python Imaging Library (PIL)是python 下的图像处理模块,支持多种格式,并提供强大的图像处理功能,可以通过pip进行安装后使用。 1.2pillow具体应用 Pillow 库是 Python3 最常用的图像处理库,它支持多种图像格式&a…...
TiCDC Canal-JSON 消息接收示例(Java 版)
1.引言 业务程序经常会通过各式各样的缓存来提升用户的访问速度。 由于存在缓存,在一些实时性要求较高的场景中,需要在数据变更的同时将数据缓存进行更新或删除。 如果数据本身由其他业务部门提供,就无法在写入的同时做缓存的一致性处理。…...
SQLite、MySQL、PostgreSQL3个关系数据库之间的对比
引言 关系数据模型以行和列的表格形式组织数据,在数据库管理工具中占主导地位。今天还有其他数据模型,包括NoSQL和NewSQL,但是关系数据库管理系统(RDBMS)仍然占主导地位用于存储和管理全球数据。 本文比较了三种实现最…...
开源容灾备份软件,开源cdp备份软件
数据的安全性和完整性面临着硬件问题、黑客攻击、人为错误等各种威胁。在这种环境下,开源容灾备份软件应运而生,通过提供自动数据备份和恢复,有效地保证了公司的数据安全。 一、开源容灾备份软件的定义和作用 开源容灾备份软件是一种基于开源…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
Java设计模式:责任链模式
一、什么是责任链模式? 责任链模式(Chain of Responsibility Pattern) 是一种 行为型设计模式,它通过将请求沿着一条处理链传递,直到某个对象处理它为止。这种模式的核心思想是 解耦请求的发送者和接收者,…...
