window下jdk安装及更换jdk版本的一些问题。
目录
- jdk安装
- jdk的选择。
- oracle的jdk怎么安装。
- openjdk怎么安装。
- jdk的版本控制。
- 更换jdk的一些问题。
jdk安装
jdk的选择。
目前有两种可选的jdk,oracle的和开源的Openjdk,这两种jdk的区别可以自行查阅,就结果而言,openjdk开源的程度更高,部分框架openjdk打的支持更好。
oracle的jdk怎么安装。
- 先去官网,下载需要的版本。这里需要注意一点,尽量保证开发环境和生产环境的jdk是一致的。
- 下载完成后运行安装程序。
这里需要注意一下,不需要的东西可以不进行安装。比如jre,只是一个运行时的环境,在开发的时候不是一定要安装的,这里根据自己的需求调整即可。- 配置环境变量。
win+E打开电脑,然后在空白处右键——属性
在这里新增。变量名可写成JAVA_HOME,值则是你刚刚安装的jdk的目录地址。变量名不是一定要写成JAVA——HOME,只是为了好记。
然后修改变量path的值。增加这两条即可。
openjdk怎么安装。
下载openjdk。
这里下载后,直接解压即可。解压出来的就是环境变量中的值,和oracle的相比,少了一个安装程序。
配置环境变量。
jdk的版本控制。
在实际的工作和学习中,难免会两个不同的项目对jdk版本的要求不一样。这个时候,环境变量的合理利用,会使得对jdk的更换很方便。如图,需要会用哪个版本的,将对应环境变量的变量名换到JAVA_HOME上即可。我这里需要用的是jdk11的版本,所以JAVA_HOME指向的是JAVA_HOME_OPEN11
更换jdk的一些问题。
使用oralejdk,有时候会出现环境变量配置了,但是执行java -version后发现没有效果。
当使用安装版本的JDK程序时(一般是1.7版本以上),在安装结束后安装程序会自动将java.exe、javaw.exe、javaws.exe三个可执行文件复制到C:\Windows\System32目录,这个目录在WINDOWS环境变量中的优先级高于JAVA_HOME设置的环境变量优先级,故此直接更改JAVA_HOME会无效。
另外,JDK1.8安装版本,还会在C:\ProgramData\Oracle\Java目录中生成一些配置文件,并同时将此目录写到环境变量中的Path中。
删除C:\Windows\System32目录下的java.exe、javaw.exe、javaws.exe三个文件(如果没有就不用删)
删除环境变量Path中C:\ProgramData\Oracle\Java\javapath的配置。
相关文章:
window下jdk安装及更换jdk版本的一些问题。
目录 jdk安装jdk的选择。oracle的jdk怎么安装。openjdk怎么安装。 jdk的版本控制。更换jdk的一些问题。 jdk安装 jdk的选择。 目前有两种可选的jdk,oracle的和开源的Openjdk,这两种jdk的区别可以自行查阅,就结果而言,openjdk开源…...
GPT4模型架构的泄漏与分析
迄今为止,GPT4 模型是突破性的模型,可以免费或通过其商业门户(供公开测试版使用)向公众提供。它为许多企业家激发了新的项目想法和用例,但对参数数量和模型的保密却扼杀了所有押注于第一个 1 万亿参数模型到 100 万亿参…...
GEE/PIE遥感大数据处理与典型案例丨数据整合Reduce、云端数据可视化、数据导入导出及资产管理、机器学习算法等
目录 专题一:初识GEE和PIE遥感云平台 专题二:GEE和PIE影像大数据处理基础 专题三:数据整合Reduce 专题四:云端数据可视化 专题五:数据导入导出及资产管理 专题六:机器学习算法 专题七:…...
STM32--DMA
文章目录 DMA简介DMA特性 DMA框图DMA基本结构DMA请求数据宽度对齐DMA数据转运工程DMAADC多通道 DMA简介 直接存储器存取(DMA)用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。无须CPU干预,数据可以通过DMA快速地移动,这就节省了CPU的…...
mongodb和redis的用途
MongoDB和Redis都是常见的NoSQL数据库,它们有不同的特点和用途。 MongoDB的主要特点和用途: 数据存储:MongoDB是一种面向文档的数据库,以JSON样式的BSON文档(二进制JSON)的形式存储数据。它支持复杂的数据…...
【动手学深度学习】--18.图像增广
文章目录 图像增广1.常用的图像增广方法1.1翻转和裁剪1.2改变颜色1.3结合多种图像增广方法 2.使用图像增广进行训练3.训练 图像增广 官方笔记:图像增广 学习视频:数据增广【动手学深度学习v2】 图像增广在对训练图像进行一系列的随机变化之后ÿ…...
数据分析--统计学知识
描述型统计 描述统计 1.集中趋势 :众数、平均数、分位数 2.离散趋势: 极值(max)、极差(max-min)、平均差、方差、标准差、分位差 3.分布:峰泰、偏度 推理型统计 概率分布:离散型…...
matlab 计算点云协方差矩阵
目录 一、概述1、算法概述2、主要函数二、代码示例三、结果展示四、参数解析输入参数输出参数五、参考链接本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、概述...
python进阶之图像编程 pillow扩展库
一、概述 1.1pillow简介 Python Imaging Library (PIL)是python 下的图像处理模块,支持多种格式,并提供强大的图像处理功能,可以通过pip进行安装后使用。 1.2pillow具体应用 Pillow 库是 Python3 最常用的图像处理库,它支持多种图像格式&a…...
TiCDC Canal-JSON 消息接收示例(Java 版)
1.引言 业务程序经常会通过各式各样的缓存来提升用户的访问速度。 由于存在缓存,在一些实时性要求较高的场景中,需要在数据变更的同时将数据缓存进行更新或删除。 如果数据本身由其他业务部门提供,就无法在写入的同时做缓存的一致性处理。…...
SQLite、MySQL、PostgreSQL3个关系数据库之间的对比
引言 关系数据模型以行和列的表格形式组织数据,在数据库管理工具中占主导地位。今天还有其他数据模型,包括NoSQL和NewSQL,但是关系数据库管理系统(RDBMS)仍然占主导地位用于存储和管理全球数据。 本文比较了三种实现最…...
开源容灾备份软件,开源cdp备份软件
数据的安全性和完整性面临着硬件问题、黑客攻击、人为错误等各种威胁。在这种环境下,开源容灾备份软件应运而生,通过提供自动数据备份和恢复,有效地保证了公司的数据安全。 一、开源容灾备份软件的定义和作用 开源容灾备份软件是一种基于开源…...
Java合并区间
问题: 以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。 示例: 示例 1ÿ…...
前端面试:【代码质量与工程实践】单元测试、集成测试和持续集成
在现代软件开发中,确保代码质量是至关重要的。单元测试、集成测试和持续集成是关键的工程实践,用于提高代码的可靠性和可维护性。本文将深入探讨这些概念,以及它们如何在软件开发中发挥作用。 1. 单元测试(Unit Testing࿰…...
2023/8/17总结
项目完善: 算法推荐 item-CF 算法推荐我主要写的是协同过滤算法,然后协同过滤算法分成俩种—— 基于用户的 user-CF 基于物品的 item-CF 因为害怕用户冷启动,和数据量的原因 我选择了 item-CF 主要思路是——根据用户的点赞列表&…...
REDIS 7 教程 数据类型-进阶篇
⑥ *位图 bitmap 1. 理论 由0和1 状态表现的二进制位的bit 数组。 说明:用String 类型作为底层数据结构实现的一种统计二值状态的数据类型 位图本质是数组,它是基于String 数据类型的按位操作。该数组由多个二进制位组成,每个二进制位都对应一个偏…...
图文并茂:Python Tkinter从入门到高级实战全解析
目录 介绍什么是Tkinter?准备工作第一个Tkinter程序界面布局事件处理补充知识点 文本输入框复选框和单选框列表框弹出对话框 综合案例:待办事项列表总结 介绍 欢迎来到本篇文章,我们将带您深入了解如何在Python中使用Tkinter库来创建图形用…...
npm和yarn的区别?
文章目录 前言npm和yarn的作用和特点npm和yarn的安装的机制npm安装机制yarn安装机制检测包解析包获取包链接包构建包 总结后言 前言 这一期给大家讲解npm和yarn的一些区别 npm和yarn的作用和特点 包管理:npm 和 yarn 可以用于安装、更新和删除 JavaScript 包。它们提…...
微服务项目容器编排docker-compose.yml、Dockerfile文件模板、相关配置文件、shell脚本
nacos Dockerfile(不需要特殊处理,使用docker conpose可以不写) # 基础镜像 FROM nacos/nacos-server # author MAINTAINER jianglifeng<jlifengfoxmail.com> RUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime \ &&a…...
算法通过村第三关-数组黄金笔记|数组难解
文章目录 前言数组中出现超过一半的数字数组中只出现一次的数字颜色的分类问题(荷兰国旗问题)基于冒泡排序的双指针(快慢指针)基于快排的双指针(对撞指针) 总结 前言 提示:苦不来自外在环境中的人、事、物,…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...








