当前位置: 首页 > news >正文

Kaggle回归问题Mercedes——Benz Greener Manufacturing

目录

  • 前言
  • 1 题目介绍
  • 2 数据清洗
  • 3 数据可视化分析
  • 4 模型训练
  • 5 源码

前言

这是我在大三选修课的课程设计,内容参考了Kaggle上高赞的代码,有详细批注,整体比较基础,结构相对完整,便于初学者学习。这个是一个回归问题,我的另外一篇博客《Kaggle分类问题Titanic——Machine Learning from Disaster》介绍了回归问题。除此之外我的《电商评论文本挖掘》也是我当年的课程设计,也有详细的批注,相比这个难度会稍微高些。

1 题目介绍

题目背景:自1886年第一辆奔驰汽车问世以来,梅赛德斯奔驰一直代表着重要的汽车创新。为确保每一款独特的汽车配置在上路之前的安全性和可靠性,Daimler的工程师开发了一个强大的测试系统。但是,如果没有强大的算法,为如此多可能的特征组合计算他们的测试系统的速度,这将是复杂且耗时的。而我们的任务是使用代表奔驰汽车功能的不同排列的数据集,以预测通过测试所需的时间。这个时间将有助于更快的测试,在不降低Daimler标准的情况下,减少二氧化碳排放。

数据介绍:数据匿名,没有具体介绍,共有378个变量,分别为时间y以及其他相关特征。
在这里插入图片描述

2 数据清洗

1)对数据进行概览。
在这里插入图片描述
2)查看所有变量的种类。
在这里插入图片描述
在这里插入图片描述

3)查看为object类的列
在这里插入图片描述
4)查看是否有缺失值(无)
5)查看int列,可以看出大部分整数列的值都是0与1,有些全为0的可以将他们删去。
在这里插入图片描述
在这里插入图片描述

3 数据可视化分析

1)利用stripplot绘制X0与y的关系。
在这里插入图片描述
2)利用boxplot绘制X2与y的关系。
在这里插入图片描述
3)利用violinplot绘制X3与y的关系。
在这里插入图片描述
4)利用barh绘制水平条形图,展现01变量0与1的比重。
在这里插入图片描述
5)利用heatmap查看每列0或1所对应的平均y值,可以发现出现了很好的区分。
在这里插入图片描述
6)利用regplot绘制ID列的线性回归图,可以看出随着id的增大,有个轻微下降的趋势。
在这里插入图片描述
7)利用violinplot查看查看训练集与测试集ID的分布,可以看出ID是随机的。
在这里插入图片描述
8)根据xgboost,得到重要的变量。
在这里插入图片描述
在这里插入图片描述
9)根据随机森林得到重要的变量。
在这里插入图片描述
在这里插入图片描述

4 模型训练

使用PCA、ICA、tSVD等对数据进行降维。
在这里插入图片描述
在这里插入图片描述
使用TPOT自动选择机器学习模型和参数。搜索整个管道空间是特别耗时的,在默认的TPOT参数下(100 generations with 100 population size),TPOT将在完成前评估1万个管道配置。网格搜索1万个超参数组合用于机器学习算法,而且用10倍的交叉验证来评估这1万个模型,这意味着大约有10万个模型在一个网格搜索的训练数据中被匹配和评估。这是一个非常耗时的过程,即使对于像决策树这样的简单模型也是如此。

典型的TPOT运行将需要数小时到数天才能完成(除非是一个小数据集),但是可以中断运行,并看到目前为止最好的结果。TPOT还提供warm_start参数,可以从中断的地方重新启动之前运行的TPOT。

generations(default=100),运行管道优化过程的迭代次数。一定是正数。一般来说,值越大,性能越好。

population_size(default=100),在每一代遗传中保留的个体数(基因编程)。一定是正数。一般来说,值越大,性能越好。

verbosity(default=0),0将不会打印任何东西;1将打印很少的信息;2打印更多的信息并提供一个进度条;3打印所有内容,并提供一个进度条。
在这里插入图片描述
导出TPOT选择好的模型与其参数。
在这里插入图片描述

5 源码

为了更好的观看效果,我将源码放在了Github上,如有帮助,希望点个星星支持一下,感谢。

相关文章:

Kaggle回归问题Mercedes——Benz Greener Manufacturing

目录 前言1 题目介绍2 数据清洗3 数据可视化分析4 模型训练5 源码 前言 这是我在大三选修课的课程设计,内容参考了Kaggle上高赞的代码,有详细批注,整体比较基础,结构相对完整,便于初学者学习。这个是一个回归问题&…...

天润融通「微藤大语言模型平台2.0」以知识驱动企业高速增长

8月23日,天润融通(又称“天润云”,2167.HK),正式发布「微藤大语言模型平台2.0」。 “大模型企业知识企业知识工程”。 “不能有效记录和管理知识的企业是不能持续进步的。在企业的生产流程中,相比于其他场景&#xff0…...

【BUG】解决安装oracle11g或12C中无法访问临时位置的问题

项目场景: 安装oracle时,到第二步出现oracle11g或12C中无法访问临时位置的问题。 解决方案: 针对客户端安装,在cmd中执行命令:前面加实际路径setup.exe -ignorePrereq -J"-Doracle.install.client.validate.cli…...

2. 使用IDEA创建Spring Boot Hello项目并管理依赖——Maven入门指南

前言:本文将介绍如何使用IDEA创建一个Spring Boot Hello项目,并通过Maven来管理项目的依赖。我们从项目的创建到代码的编写,再到项目的构建和运行,一步步演示了整个过程。 🚀 作者简介:作为某云服务提供商的…...

Python在电路课程中的应用

1 需求 课程中有大量的计算,电路方程、复数计算,之前都是用的MATLAB online,可现在要过期了,只能更换平台。 2 工具 https://www.online-python.com/ Python3 在线工具 | 菜鸟工具 (runoob.com) 3 Sinusoid 章节 涉及到复数计…...

Spark SQL join的三种实现方式

引言 join是SQL中的常用操作,良好的表结构能够将数据分散到不同的表中,使其符合某种规范(mysql三大范式),可以最大程度的减少数据冗余,更新容错等,而建立表和表之间关系的最佳方式就是join操作。 对于Spark来说有3种…...

wazuh环境配置和漏洞复现

1.wazuh配置 虚拟机 (OVA) - 替代安装 (wazuh.com)在官方网页安装ova文件 打开VMware选择打开虚拟机,把下载好的ova文件放入在设置网络改为NAT模式 账号:wazuh-user 密码:wazuh ip a 查看ip 启动小皮 远程连接 账号admin …...

九五从零开始的运维之路(其三十六)

文章目录 前言一、集群概述1.负载均衡技术类型(一)四层负载均衡器(二)七层负载均衡器 2.负载均衡实现方式(一)硬件负载均衡产品:(二)软件负载均衡产品: 二、L…...

同步和异步有什么区别,使用场景?

同步(Synchronous)和异步(Asynchronous)是用于描述不同的操作和通信模式的术语。它们在处理任务、执行代码以及处理通信时有很大的异同。 同步(Synchronous) 同步操作是指程序的执行顺序按照代码的先后顺序进行,一个操作完成后才能执行下一个操作。在同步操作中,调用一…...

webassembly009 transformers.js 网页端侧推理

之前试用过两个网页端的神经网络框架,一个是 Tensorflow PlayGround,它相当与实现了一个网页端的简单的训练框架,有关节点的数据结构可看这篇。另一个是onnx的网页端(nodejs绿色免安装try onnx on web(chrome)),需要自己转换onnx模…...

Android动态添加和删除控件/布局

一、引言 最近在研究RecyclerView二级列表的使用方法,需要实现的效果如下。 然后查了一些博客,觉得实现方式太过复杂,而且这种方式也不是特别受推荐,所以请教了别人,得到了一种感觉还不错的实现方式。实现的思路为&…...

maven下载不了仓库地址为https的依赖jar,配置参数忽略ssl安全检查

问题原因 私服使用的https地址,然后安全证书过期的或没有,使用maven命令时,可以添加以下参数,忽略安全检查 mvn -Dmaven.wagon.http.ssl.insecuretrue -Dmaven.wagon.http.ssl.allowalltrue -Dmaven.wagon.http.ssl.ignore.vali…...

3.Redis 单线程模型

redis 单线程模型 redis 只使用一个线程来处理所有的命令请求,并不是说一个 redis 服务器进程内部真的就只有一个线程,其实也有多个线程,多个线程是再处理网络 IO。 那么在多线程中,针对类似于这样的场景两个线程尝试同时对一个…...

0基础学习VR全景平台篇 第90篇:智慧眼-数据统计

【数据统计】是按不同条件去统计整个智慧眼项目中的热点,共包含四大块,分别是数据统计、分类热点、待审核、回收站,下面我们来逐一进行介绍。 1、数据统计 ① 可以按所属分类、场景分组、所属场景、热点类型以及输入热点名去筛选对应的热点&…...

【Go】Goland项目配置运行教程

Golang项目配置运行教程 1.安装Golang下载安装包安装 2.Goland配置2.1 环境2.2 goland配置2.2.1 没有makefile的情况2.2.2 有makefile的情况 3.跨平台项目4.补充 注意,本项目描述的是git clone下来的Golang项目配置运行教程,并不是从头创建一个Golang项目…...

Docker容器与虚拟化技术:Docker consul 实现服务注册与发现

目录 一、理论 1.Docker consul 二、实验 1.consul部署 2. consul-template部署 三、总结 一、理论 1.Docker consul (1)服务注册与发现 服务注册与发现是微服务架构中不可或缺的重要组件。起初服务都是单节点的,不保障高可用性&…...

【大模型AIGC系列课程 2-2】大语言模型的“第二大脑”

1. 大型语言模型的不足之处 很多人使用OpenAI提供的GPT系列模型时都反馈效果不佳。其中一个主要问题是它无法回答一些简单的问题。 ● 可控性:当我们用中文问AI一些关于事实的问题时,它很容易编造虚假答案。 ● 实时性:而当你询问它最近发生的新闻事件时,它会干脆地告诉你…...

Java基础数据结构

二叉查找树 二叉查找树,又称二叉树或者二叉搜索树 特点:每一个节点上最多又两个子节点 任意节点左子树上的值都小于当前节点 任意节点右子树上的值都大于当前节点 二叉查找树添加节点:规则 小的存左边 大的存右边 一样的不存 平衡二叉树&am…...

PP-TS基于启发式搜索和集成方法的时序预测模型,使预测更加准确

时间序列数据在各行业和领域中无处不在,如物联网传感器的测量结果、每小时的销售额业绩、金融领域的股票价格等等,都是时间序列数据的例子。时间序列预测就是运用历史的多维数据进行统计分析,推测出事物未来的发展趋势。 为加快企业智能化转…...

vue 04-reactive与ref的选择

reactive与re两者区别? reactive可以转换对象成为响应式数据对象,但是不支持简单数据类型 ref可以转换简单数据类型为响应式数据对象,也支持复杂数据类型,但是操作的时候需要.value 推荐使用的话: 如果能确定数据是对象且字段名称也确定,可以使用reactive转成响应式…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...