Kaggle回归问题Mercedes——Benz Greener Manufacturing
目录
- 前言
- 1 题目介绍
- 2 数据清洗
- 3 数据可视化分析
- 4 模型训练
- 5 源码
前言
这是我在大三选修课的课程设计,内容参考了Kaggle上高赞的代码,有详细批注,整体比较基础,结构相对完整,便于初学者学习。这个是一个回归问题,我的另外一篇博客《Kaggle分类问题Titanic——Machine Learning from Disaster》介绍了回归问题。除此之外我的《电商评论文本挖掘》也是我当年的课程设计,也有详细的批注,相比这个难度会稍微高些。
1 题目介绍
题目背景:自1886年第一辆奔驰汽车问世以来,梅赛德斯奔驰一直代表着重要的汽车创新。为确保每一款独特的汽车配置在上路之前的安全性和可靠性,Daimler的工程师开发了一个强大的测试系统。但是,如果没有强大的算法,为如此多可能的特征组合计算他们的测试系统的速度,这将是复杂且耗时的。而我们的任务是使用代表奔驰汽车功能的不同排列的数据集,以预测通过测试所需的时间。这个时间将有助于更快的测试,在不降低Daimler标准的情况下,减少二氧化碳排放。
数据介绍:数据匿名,没有具体介绍,共有378个变量,分别为时间y以及其他相关特征。
2 数据清洗
1)对数据进行概览。
2)查看所有变量的种类。
3)查看为object类的列
4)查看是否有缺失值(无)
5)查看int列,可以看出大部分整数列的值都是0与1,有些全为0的可以将他们删去。
3 数据可视化分析
1)利用stripplot绘制X0与y的关系。
2)利用boxplot绘制X2与y的关系。
3)利用violinplot绘制X3与y的关系。
4)利用barh绘制水平条形图,展现01变量0与1的比重。
5)利用heatmap查看每列0或1所对应的平均y值,可以发现出现了很好的区分。
6)利用regplot绘制ID列的线性回归图,可以看出随着id的增大,有个轻微下降的趋势。
7)利用violinplot查看查看训练集与测试集ID的分布,可以看出ID是随机的。
8)根据xgboost,得到重要的变量。
9)根据随机森林得到重要的变量。
4 模型训练
使用PCA、ICA、tSVD等对数据进行降维。
使用TPOT自动选择机器学习模型和参数。搜索整个管道空间是特别耗时的,在默认的TPOT参数下(100 generations with 100 population size),TPOT将在完成前评估1万个管道配置。网格搜索1万个超参数组合用于机器学习算法,而且用10倍的交叉验证来评估这1万个模型,这意味着大约有10万个模型在一个网格搜索的训练数据中被匹配和评估。这是一个非常耗时的过程,即使对于像决策树这样的简单模型也是如此。
典型的TPOT运行将需要数小时到数天才能完成(除非是一个小数据集),但是可以中断运行,并看到目前为止最好的结果。TPOT还提供warm_start参数,可以从中断的地方重新启动之前运行的TPOT。
generations(default=100),运行管道优化过程的迭代次数。一定是正数。一般来说,值越大,性能越好。
population_size(default=100),在每一代遗传中保留的个体数(基因编程)。一定是正数。一般来说,值越大,性能越好。
verbosity(default=0),0将不会打印任何东西;1将打印很少的信息;2打印更多的信息并提供一个进度条;3打印所有内容,并提供一个进度条。
导出TPOT选择好的模型与其参数。
5 源码
为了更好的观看效果,我将源码放在了Github上,如有帮助,希望点个星星支持一下,感谢。
相关文章:

Kaggle回归问题Mercedes——Benz Greener Manufacturing
目录 前言1 题目介绍2 数据清洗3 数据可视化分析4 模型训练5 源码 前言 这是我在大三选修课的课程设计,内容参考了Kaggle上高赞的代码,有详细批注,整体比较基础,结构相对完整,便于初学者学习。这个是一个回归问题&…...

天润融通「微藤大语言模型平台2.0」以知识驱动企业高速增长
8月23日,天润融通(又称“天润云”,2167.HK),正式发布「微藤大语言模型平台2.0」。 “大模型企业知识企业知识工程”。 “不能有效记录和管理知识的企业是不能持续进步的。在企业的生产流程中,相比于其他场景࿰…...

【BUG】解决安装oracle11g或12C中无法访问临时位置的问题
项目场景: 安装oracle时,到第二步出现oracle11g或12C中无法访问临时位置的问题。 解决方案: 针对客户端安装,在cmd中执行命令:前面加实际路径setup.exe -ignorePrereq -J"-Doracle.install.client.validate.cli…...

2. 使用IDEA创建Spring Boot Hello项目并管理依赖——Maven入门指南
前言:本文将介绍如何使用IDEA创建一个Spring Boot Hello项目,并通过Maven来管理项目的依赖。我们从项目的创建到代码的编写,再到项目的构建和运行,一步步演示了整个过程。 🚀 作者简介:作为某云服务提供商的…...

Python在电路课程中的应用
1 需求 课程中有大量的计算,电路方程、复数计算,之前都是用的MATLAB online,可现在要过期了,只能更换平台。 2 工具 https://www.online-python.com/ Python3 在线工具 | 菜鸟工具 (runoob.com) 3 Sinusoid 章节 涉及到复数计…...
Spark SQL join的三种实现方式
引言 join是SQL中的常用操作,良好的表结构能够将数据分散到不同的表中,使其符合某种规范(mysql三大范式),可以最大程度的减少数据冗余,更新容错等,而建立表和表之间关系的最佳方式就是join操作。 对于Spark来说有3种…...

wazuh环境配置和漏洞复现
1.wazuh配置 虚拟机 (OVA) - 替代安装 (wazuh.com)在官方网页安装ova文件 打开VMware选择打开虚拟机,把下载好的ova文件放入在设置网络改为NAT模式 账号:wazuh-user 密码:wazuh ip a 查看ip 启动小皮 远程连接 账号admin …...
九五从零开始的运维之路(其三十六)
文章目录 前言一、集群概述1.负载均衡技术类型(一)四层负载均衡器(二)七层负载均衡器 2.负载均衡实现方式(一)硬件负载均衡产品:(二)软件负载均衡产品: 二、L…...
同步和异步有什么区别,使用场景?
同步(Synchronous)和异步(Asynchronous)是用于描述不同的操作和通信模式的术语。它们在处理任务、执行代码以及处理通信时有很大的异同。 同步(Synchronous) 同步操作是指程序的执行顺序按照代码的先后顺序进行,一个操作完成后才能执行下一个操作。在同步操作中,调用一…...

webassembly009 transformers.js 网页端侧推理
之前试用过两个网页端的神经网络框架,一个是 Tensorflow PlayGround,它相当与实现了一个网页端的简单的训练框架,有关节点的数据结构可看这篇。另一个是onnx的网页端(nodejs绿色免安装try onnx on web(chrome)),需要自己转换onnx模…...

Android动态添加和删除控件/布局
一、引言 最近在研究RecyclerView二级列表的使用方法,需要实现的效果如下。 然后查了一些博客,觉得实现方式太过复杂,而且这种方式也不是特别受推荐,所以请教了别人,得到了一种感觉还不错的实现方式。实现的思路为&…...

maven下载不了仓库地址为https的依赖jar,配置参数忽略ssl安全检查
问题原因 私服使用的https地址,然后安全证书过期的或没有,使用maven命令时,可以添加以下参数,忽略安全检查 mvn -Dmaven.wagon.http.ssl.insecuretrue -Dmaven.wagon.http.ssl.allowalltrue -Dmaven.wagon.http.ssl.ignore.vali…...

3.Redis 单线程模型
redis 单线程模型 redis 只使用一个线程来处理所有的命令请求,并不是说一个 redis 服务器进程内部真的就只有一个线程,其实也有多个线程,多个线程是再处理网络 IO。 那么在多线程中,针对类似于这样的场景两个线程尝试同时对一个…...

0基础学习VR全景平台篇 第90篇:智慧眼-数据统计
【数据统计】是按不同条件去统计整个智慧眼项目中的热点,共包含四大块,分别是数据统计、分类热点、待审核、回收站,下面我们来逐一进行介绍。 1、数据统计 ① 可以按所属分类、场景分组、所属场景、热点类型以及输入热点名去筛选对应的热点&…...

【Go】Goland项目配置运行教程
Golang项目配置运行教程 1.安装Golang下载安装包安装 2.Goland配置2.1 环境2.2 goland配置2.2.1 没有makefile的情况2.2.2 有makefile的情况 3.跨平台项目4.补充 注意,本项目描述的是git clone下来的Golang项目配置运行教程,并不是从头创建一个Golang项目…...

Docker容器与虚拟化技术:Docker consul 实现服务注册与发现
目录 一、理论 1.Docker consul 二、实验 1.consul部署 2. consul-template部署 三、总结 一、理论 1.Docker consul (1)服务注册与发现 服务注册与发现是微服务架构中不可或缺的重要组件。起初服务都是单节点的,不保障高可用性&…...

【大模型AIGC系列课程 2-2】大语言模型的“第二大脑”
1. 大型语言模型的不足之处 很多人使用OpenAI提供的GPT系列模型时都反馈效果不佳。其中一个主要问题是它无法回答一些简单的问题。 ● 可控性:当我们用中文问AI一些关于事实的问题时,它很容易编造虚假答案。 ● 实时性:而当你询问它最近发生的新闻事件时,它会干脆地告诉你…...

Java基础数据结构
二叉查找树 二叉查找树,又称二叉树或者二叉搜索树 特点:每一个节点上最多又两个子节点 任意节点左子树上的值都小于当前节点 任意节点右子树上的值都大于当前节点 二叉查找树添加节点:规则 小的存左边 大的存右边 一样的不存 平衡二叉树&am…...

PP-TS基于启发式搜索和集成方法的时序预测模型,使预测更加准确
时间序列数据在各行业和领域中无处不在,如物联网传感器的测量结果、每小时的销售额业绩、金融领域的股票价格等等,都是时间序列数据的例子。时间序列预测就是运用历史的多维数据进行统计分析,推测出事物未来的发展趋势。 为加快企业智能化转…...
vue 04-reactive与ref的选择
reactive与re两者区别? reactive可以转换对象成为响应式数据对象,但是不支持简单数据类型 ref可以转换简单数据类型为响应式数据对象,也支持复杂数据类型,但是操作的时候需要.value 推荐使用的话: 如果能确定数据是对象且字段名称也确定,可以使用reactive转成响应式…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...

云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...
背包问题双雄:01 背包与完全背包详解(Java 实现)
一、背包问题概述 背包问题是动态规划领域的经典问题,其核心在于如何在有限容量的背包中选择物品,使得总价值最大化。根据物品选择规则的不同,主要分为两类: 01 背包:每件物品最多选 1 次(选或不选&#…...

云原生时代的系统设计:架构转型的战略支点
📝个人主页🌹:一ge科研小菜鸡-CSDN博客 🌹🌹期待您的关注 🌹🌹 一、云原生的崛起:技术趋势与现实需求的交汇 随着企业业务的互联网化、全球化、智能化持续加深,传统的 I…...