自然语言处理学习笔记(七)————字典树效率改进
目录
1. 首字散列其余二分的字典树
2.双数组字典树
3.AC自动机(多模式匹配)
(1)goto表
(2)output表
(3)fail表
4.基于双数组字典树的AC自动机
字典树的数据结构在以上的切分算法中已经很快了,但还有一些基于字典树的算法改进,把分词速度推向了千万字每秒的级别,主要按照以下递进关系优化:
- 首字散列其余二分的字典树
- 双数组字典树
- AC自动机(多模式匹配)
- 基于双数组字典树的AC自动机
1. 首字散列其余二分的字典树
散列函数用来将对象转换为整数。散列函数必须满足的基本要求是:对象相同,散列值必须相同。散列函数设计不当,则散列表的内存效率和查找效率都不高。Python没有char类型,字符被视作长度为1的字符串,所以实际调用的就是str的散列函数。在64位系统上,str的散列函数返回64位的整数。但Unicode字符总共也才136690个,远远小于2^64。这导致两个字符在字符集中明明相邻,然而散列值却相差万里。
Java中的字符散列函数则要友好一些,Java中字符的编码为UTF-16。每个字符都可以映射为16位不重复的连续整数,恰好是完美散列。这个完美的散列函数输出的是区间[0,65535]内的正整数,用来索引子节点非常合适。具体做法是创建一个长为65536的数组,将子节点按对应的字符整型值作为下标放入该数组中即可。这样每次状态转移时,只需访问对应下标就行了,这在任何编程语言中都是极快的。然而这种待遇无法让每个节点都享受,如果词典中的词语最长为l,则最坏情况下字典树第l层的数组容量之和为O(65536^l)。内存指数膨胀,不现实。一个变通的方法是仅在根节点实施散列策略。
字典树其实就是一棵前缀树(指的是前缀相同的词语必然经过同一个节点) 如何加速呢?在扫描"自然语言处理"这句话的时候,朴素实现会依次查询"自"、"自然"、"自然语"、"自然语言"等词语是否在词典中。但事实上,如果"自然"这条路径不存在于前缀树中,则可以断定一切以"自然"开头的词语都不可能存在。
2.双数组字典树
状态转移复杂度为常数的数据结构。它由base和check两个数组构成,又简称双数组
3.AC自动机(多模式匹配)
我们已经知道,字典树的本质就是DFA,假设每次状态转移的时间复杂度为常数。那么对文本“123”的扫描一共发生了六次状态转移:1、12、123;2、23;3.对于文本长度为n来说,共发生了 O(n^2) 次状态转移,所以复杂度为 O(n^2)
那么可不可以只进行一次扫描就查询出所有出现的单词呢,AC自动机就可以做到,它是一种 O(n) 复杂度的算法。给定多个词语(模式串, pattern),从母文本中匹配他们的问题称为多模式匹配。在中文处理中,汉字就是常见的短模式串,AC自动机在中文自然语言处理中应用更广泛。
举个例子:我们的模式串为“自然语言”,如果用字典树查询,以“自“为起点, 找到”自然语言“后,起点又退回到”然“继续扫描...如果扫描到”自然语言“的同时知道”然语言“、”语言“、”言”不在字典树中,则可以少查询三次,观察这三个字符串,它们共享递进式的后缀,所以可以引入后缀树。AC自动机在前缀树的基础上为每个节点建立后缀树,节省大量查询。
AC自动机由goto表,fail表和output表组成,分别类似于前缀树和后缀树。
(1)goto表
goto表也叫success表,其实就是一颗前缀树,用来将每个模式串索引到前缀树上。下面引用经典的ushers作为母文本,模式串集合为{he,she,his,hers}

它的构建与前缀树一致,唯一不同的是,根节点不光可以按h和s转移,还接受任意其他字符,转移终点都是自己。这样形成了一个圈,使得一棵树变为一幅有向有环图。这个圈的目的在于,扫描时若遇到非h且非s的字符,状态机一直保持初始状态。
(2)output表
给定一个状态,我们需要知道该状态是否对应某个或某些模式串,以决定是否输出模式串以及对应的值。这时用到的关联结构被称为utput 表。在图2-9所示的例子中,output表中的状态就是图中的深蓝色节点,对应的output 如表所示。
output 表中的元素有两种,一种是从初始状态到当前状态的路径本身对应的模式串(比如2号状态),另一种是路径的后缀所对应的模式串(比如5号状态)。于是它的构造也分为两步,第一步与字典树类似,就是记录完整路径对应的模式串。第二步则是找出所有路径后缀及其模式串,这一步可以与fai1表的构造同步进行。
为goto表加上output表

(3)fail表
fail表保存的是状态间一对一的关系,存储状态转移失败后应当回退的最佳状态。最佳状态指的是能记住已匹配上的字符串的最长后缀的那个状态。比如,匹配she后来到状态5,再来一个字符,goto失败,哪个状态才是fail的最佳选择呢?当前匹配到的字符串为she,最长后缀为he,对应路径0-1-2。因此,状态2就是状态5 fail的最佳选择。fail到状态2之后,自动机记住了he,做好了接受r的准备。再比如,匹配his后来到状态7,再来一个字符,goto失败了。his 的最长后缀为is,可惜没有这条路径;次长后缀为s,对应路径0-3,因此状态7应当fail到3。
如何构建fail表?定义s为当前状态;S.goto(c)为转移表,返回s按字符c转移后的状态,null表示转移失败;S.fail为fail表,代表转移失败时从状态S回退的状态。fail表的构建方法如下。
(1)初始状态的goto表是满的,永远不会失败,因此没有fail指针。与初始状态直接相连的所有状态,其fail指针都指向初始状态,如图中的虚线所示。

(2)从初始状态开始进行广度优先遍历(BFS),若当前状态S接受字符c直达的状态为T,则沿着S的fail指针回溯,直到找到第一个前驱状态F,使得F.goto(c) != null。将T的fail指针设F.goto(c),也即:
F = S.fail
while F.goto(c) == nullF= F.fail
T.fail = F.goto(c)
(3)由于F路径是T路径的后缀,也就是说T一定包含F,因而T的output 也应包含F的output。于是更新:
T.output += F.output
为上图加上完整的fail表后,自动机如图所示。

算上fail表的虚线,从后往前看,AC自动机由许多后缀树构成。其中一棵如图所示。

字典树状态转移可能失败,失败时扫描起点往右挪一下,重新扫描。而在AC自动机中,按goto表转移失败时就按fail转移,永远不会失败,因此只需扫描一遍文本。
4.基于双数组字典树的AC自动机
双数组字典树能在O(1)(1是模式串长度)时间内高速完成单串匹配,并且内存消耗可控,然而软肋在于多模式匹配。如果要匹配多个模式串,必须先实现前缀查询,然后频繁截取文本后缀才可多匹配。比如 ushers、shers、hers…这样一份文本要回退扫描多遍,性能较低。既然 AC 自动机的goto表本身就是一棵字典树,能否利用双数组字典树来实现它呢?如果能用双数组字典树表达 AC自动机,就能集合两者的优点,得到一种近乎完美的数据结构。
ACDAT的基本原理是替换 AC自动机的goto表,也可看作为一棵双数组字典树的每个状态(下标)附上额外的信息。上节提到,AC自动机的goto表就是字典树,只不过AC自动机比字典树多了output 表和fail表。那么ACDAT的构建原理就是为每个状态(base[i]和check[i])构建output[i][]和fail[i]。具体说来,分为3步。
(1)构建一棵普通的字典树,让终止节点记住对应模式串的字典序。
(2)构建双数组字典树,在将每个状态映射到双数组时,让它记住自己在双数组中的下标。
(3)构建AC自动机,此时fail表中存储的就是状态的下标。
相关文章:
自然语言处理学习笔记(七)————字典树效率改进
目录 1. 首字散列其余二分的字典树 2.双数组字典树 3.AC自动机(多模式匹配) (1)goto表 (2)output表 (3)fail表 4.基于双数组字典树的AC自动机 字典树的数据结构在以上的切分算法中已经很快了&#x…...
forEach和map有什么区别,使用场景?
forEach和map有什么区别,使用场景? 区别什么意思?forEach: 不直接改变原始数组,但可以在回调中更改原始数组。 区别 forEach 和 map 都是数组的常用方法,但它们有不同的目的和用法。下面是它们之间的主要区别以及各自…...
【Spring Boot】SpringBoot完整实现社交网站系统
一个完整的社交网站系统需要涉及到用户登录、发布动态、关注、评论、私信等各方面。这里提供一个简单的实现示例,供参考。 前端代码 前端使用Vue框架,以下是部分代码示例: 登录页: <template><div><input type…...
Modbus转Profinet网关连接三菱变频器博图快速配置
本案例将分享如何使用兴达易控的modbus转profinet网关(XD-MDPN100)来连接西门子1200系列plc,并实现三菱变频器的485通讯兼容转modbusTCP通信。通过在博图中进行配置,我们可以实现设备之间的连接和通信。 首先,我们需要…...
8.9 【C语言】有关指针的小结
(1)首先要准确理解指针的含义。 &a是变量a的地址,也可称为变量a的指针。 指针变量是存放地址的变量。 指针变量的值是一个地址。 指针变量也称为地址变量,它的值是地址。 (2)在C语言中,…...
WordPress Nginx伪静态规则设置以及二级目录规则
WordPress Nginx伪静态规则设置以及二级目录规则(wordpress不是安装在根目录的情况) 根目录下WordPress的伪静态规则: location / {if (-f $request_filename/index.html){rewrite (.*) $1/index.html break;}if (-f $request_filename/ind…...
2023年高教社杯 国赛数学建模思路 - 复盘:人力资源安排的最优化模型
文章目录 0 赛题思路1 描述2 问题概括3 建模过程3.1 边界说明3.2 符号约定3.3 分析3.4 模型建立3.5 模型求解 4 模型评价与推广5 实现代码 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 描述 …...
React内置函数之startTransition与useTransition
React内置函数之startTransition,useTransition 在React中,使用startTransition和useTransition这两个内置函数可以帮助我们更好地管理组件的过渡状态。这两个函数的出现,旨在提供一种简单而强大的方式,来处理组件状态的变化&…...
观察者模式简介
概念: 观察者模式(Observer Pattern)是一种行为型设计模式,用于在对象之间建立一对多的依赖关系,当一个对象的状态发生变化时,其相关依赖对象会自动收到通知并进行相应处理。 特点: 松耦合&a…...
统计程序两个点之间执行的指令数量
环境:支持perf ubuntu安装 apt-get install linux-tools-common linux-tools-generic linux-tools-uname -randroid 一般自带simpleperf 分析 两个点作差, 求中间结果; *(int*)nullptr 0;案例 断点 1 代码 #define SETPOINT(...) do { *(int*)nullptr 0; } while(0…...
时序预测 | MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价)
时序预测 | MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价) 目录 时序预测 | MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价)预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现基于TSO-XGBoost金枪鱼算…...
java- ConcurrentHashMap 并发
1. ConcurrentHashMap 并发 1.1. 减小锁粒度 减小锁粒度是指缩小锁定对象的范围,从而减小锁冲突的可能性,从而提高系统的并发能力。减小锁粒度是一种削弱多线程锁竞争的有效手段,这种技术典型的应用是 ConcurrentHashMap(高性能的 HashMap)…...
java练习8.100m小球落地
题目: 如一个小球从100米高度自由落下,每次落地后就反跳回原高度的一半。 那么求它在第10次落地时,共经过多少米?第10次反弹多高? public static void main(String[] args) {/*假如一个小球从100米高度自由落下,每次落…...
Android JNI系列详解之生成指定CPU的库文件
一、前提 这次主要了解Android的cpu架构类型,以及在使用CMake工具的时候,如何指定生成哪种类型的库文件。 如上图所示,是我们之前使用CMake工具默认生成的四种cpu架构的动态库文件:arm64-v8a、armeabi-v7a、x86、x86_64࿰…...
Leetcode每日一题:1448. 统计二叉树中好节点的数目
原题 给你一棵根为 root 的二叉树,请你返回二叉树中好节点的数目。 「好节点」X 定义为:从根到该节点 X 所经过的节点中,没有任何节点的值大于 X 的值。 示例 1: 输入:root [3,1,4,3,null,1,5] 输出:4 解…...
华为OD七日集训第2期 - 按算法分类,由易到难,循序渐进,玩转OD(文末送书)
目录 一、适合人群二、本期训练时间三、如何参加四、7日集训第2期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、字符串处理第3天、数据结构第4天、递归回溯第5天、二分查找第6天、深度优先搜索dfs算法第7天、动态规划 六、集训总结1、《代码…...
3d max插件CG MAGIC中的蜂窝材质功能可提升效率吗?
工作中能提升效率也都是大家所想的,对于设计师的一个设计过程中,可能想怎么样可以更快呀,是哪个步骤慢了呢? 这样的结果只能说会很多,但是建模这个步骤,肯定是有多无少的。 为了让模型更加逼真,…...
一句话木马攻击复现:揭示黑客入侵的实战过程
这篇文章旨在用于网络安全学习,请勿进行任何非法行为,否则后果自负。 准备环境 OWASP虚拟机xfp 7与xshell 7 DVWA系统默认的账号密码均为:admin/admin 1、命令注入中复现 攻击payload 127.0.0.1 | echo "<?php eval(…...
【游戏开发教程】Unity Cinemachine快速上手,详细案例讲解(虚拟相机系统 | 新发出品 | 良心教程)
文章目录 一、前言二、插件下载三、案例1:第三人称自由视角,Free Look character场景1、场景演示2、组件参数2.1、CinemachineBrain:核心2.2、CinemachineFreeLook:第三人称自由视角相机2.2.1、设置Follow:跟随2.2.2、…...
当图像宽高为奇数时,如何计算 I420 格式的uv分量大小
背景 I420 中 yuv 数据存放在3个 planes 中。 网上一般说 I420 数据大小为 widthheight1.5 但是当 width 和 height 是奇数时,这个计算公式会有问题。 I420 中 u 和 v 的宽高分别为 y 的一半。 但是当不能整除时,是如何取整呢?向上还是向下&…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
Oracle11g安装包
Oracle 11g安装包 适用于windows系统,64位 下载路径 oracle 11g 安装包...
