模型预测笔记(三):通过交叉验证网格搜索机器学习的最优参数
文章目录
- 网络搜索
- 介绍
- 步骤
- 参数
- 代码实现
网络搜索
介绍
网格搜索(Grid Search)是一种超参数优化方法,用于选择最佳的模型超参数组合。在机器学习中,超参数是在训练模型之前设置的参数,无法通过模型学习得到。网格搜索通过尝试所有可能的超参数组合,并使用交叉验证来评估每个组合的性能,从而确定最佳的超参数组合。
步骤
网格搜索的步骤如下:
- 定义要调整的超参数范围:确定要调整的每个超参数的可能取值范围。例如,学习率、正则化参数等。
- 创建参数网格:将每个超参数的可能取值组合成一个参数网格。
- 定义评估指标:选择一个评估指标来衡量每个超参数组合的性能。例如,准确率、均方误差等。
- 构建模型和交叉验证:选择一个机器学习模型,并定义交叉验证策略,将数据集分成训练集和验证集。
- 执行网格搜索:对于每个超参数组合,在交叉验证的每个训练集上训练模型,并在验证集上评估模型性能。
- 选择最佳超参数组合:根据评估指标的结果,选择具有最佳性能的超参数组合。
- 用最佳超参数训练模型:使用最佳超参数组合在整个训练数据集上重新训练模型。
网格搜索的优点是能够系统地尝试不同的超参数组合,找到最佳的模型性能。然而,由于需要尝试所有可能的组合,网格搜索的计算成本较高,尤其是超参数的数量较多时。因此,对于大型数据集和复杂模型,网格搜索可能会变得非常耗时。
为了减少计算成本,可以使用随机搜索(Randomized Search)等其他超参数优化方法,或者使用启发式方法来选择最佳超参数组合。
参数
GridSearchCV的参数包括:
- estimator:要使用的模型或者估计器对象。
- param_grid:一个字典或者列表,包含要进行网格搜索的参数和对应的取值范围。
- scoring:评估模型性能的指标,可以是字符串(使用模型的内置评估指标)或者可调用对象(自定义评估指标)。
- cv:交叉验证的折数或者交叉验证迭代器。
- n_jobs:并行运行的作业数量。-1表示使用所有可用的处理器。
- verbose:控制详细程度的整数值。0表示不输出任何信息,大于1表示输出详细的信息。
- refit:如果为True(默认值),则在找到最佳参数后,使用最佳参数重新拟合整个数据集。
- return_train_score:如果为True,则同时返回训练集上的得分。
- error_score:当模型在某些参数组合下发生错误时,用于返回的分数。可以设置为’raise’(抛出错误)或者数字(返回指定的分数)。
- verbose:控制详细程度的整数值。0表示不输出任何信息,大于1表示输出详细的信息。
注意:
在GridSearchCV中,scoring参数可以选择以下评分指标:
回归问题:
- ‘explained_variance’:可解释方差
- ‘neg_mean_absolute_error’:负平均绝对误差
- ‘neg_mean_squared_error’:负均方误差
- ‘neg_mean_squared_log_error’:负对数均方误差
- ‘neg_median_absolute_error’:负中位数绝对误差
- ‘r2’:R^2决定系数
二分类问题:
- ‘accuracy’:准确率
- ‘balanced_accuracy’:平衡准确率
- ‘average_precision’:平均精确率
- ‘f1’:F1得分
- ‘precision’:精确率
- ‘recall’:召回率
- ‘roc_auc’:ROC曲线下的面积
多分类问题: - ‘accuracy’:准确率
- ‘balanced_accuracy’:平衡准确率
- ‘average_precision’:平均精确率
- ‘f1_micro’:微观平均F1得分
- ‘f1_macro’:宏观平均F1得分
- ‘precision_micro’:微观平均精确率
- ‘precision_macro’:宏观平均精确率
- ‘recall_micro’:微观平均召回率
- ‘recall_macro’:宏观平均召回率
- ‘roc_auc_ovr’:基于一对多的ROC曲线下的面积
请注意,不同问题类型和评估指标之间的兼容性可能会有所不同。
5折交叉验证就是把数据集分成5份,然后进行5此测试,如model1就是将第一折fold1的数据作为测试集,其余的四份作为数据集。最后每个model都计算出来一个准确度accuracy,求平均后作为此验证集的精确度。
代码实现
#调用网格搜索和决策树
from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, roc_curve, auc
parameters = {'max_depth':[3, 5, 7, 9], 'min_samples_leaf': [1, 2, 3, 4]}# 选择两个超参数 树的深度max_depth和叶子的最小值min_samples_leafclf = GridSearchCV(DecisionTreeClassifier(), parameters, cv=3, scoring='accuracy')# 进行网格搜索得到最优参数组合
clf.fit(X_train, y_train) #通过有最优参数组合的最优模型进行训练print('最优参数:', clf.best_params_)
print('验证集最高得分:', clf.best_score_)
# 获取最优模型
best_model = clf.best_estimator_
print('测试集上准确率:', best_model.score(X_test, y_test))# 得到预测概率
y_prob_DT = clf.predict_proba(X_test)[:, 1]# 得到预测标签
y_pred_DT = clf.predict(X_test)# 得到分类报告
print(classification_report(y_pred = y_pred_DT, y_true = y_test))# 绘制ROC图
fpr, tpr, threshold = roc_curve(y_score = y_prob_DT, y_true = y_test)
print("AUC值", auc(fpr, tpr))
plt.plot(fpr, tpr,"r-")
plt.plot([0, 1], [0, 1],"b-")
plt.xlable("FPR")
plt.ylable("TPR")
plt.title("ROC Curve")# 输出结果文件
result = pd.DataFrame()
result["load_ID"] = pd.read_csv("***.csv")["**ID"]
result["predict_labels"] = y_pred_DT
result.to_csv("result.csv", index = False)# 特征重要性评估
best_DT = clf.best_estimator_
best_DT.fit(X_train, y_train)# 重要性绘制
plt.figure(figsize(8, 6))
pd.Series(best_DT.feature_importances_, index=X_train.columns).sort_values().plot(kind="barh")
相关文章:
模型预测笔记(三):通过交叉验证网格搜索机器学习的最优参数
文章目录 网络搜索介绍步骤参数代码实现 网络搜索 介绍 网格搜索(Grid Search)是一种超参数优化方法,用于选择最佳的模型超参数组合。在机器学习中,超参数是在训练模型之前设置的参数,无法通过模型学习得到。网格搜索…...

创建型模式-建造者模式
使用多个简单的对象一步一步构建成一个复杂的对象 主要解决:主要解决在软件系统中,有时候面临着"一个复杂对象"的创建工作,其通常由各个部分的子对象用一定的算法构成;由于需求的变化,这个复杂对象的各个部…...

Rust常用加密算法
哈希运算(以Sha256为例) main.rs: use crypto::digest::Digest;use crypto::sha2::Sha256;fn main() { let input "dashen"; let mut sha Sha256::new(); sha.input_str(input); println!("{}", sha.result_str());} Cargo.toml: [package]n…...

[管理与领导-55]:IT基层管理者 - 扩展技能 - 1 - 时间管理 -2- 自律与自身作则,管理者管好自己时间的五步法
前言: 管理好自己的时间,不仅仅是理念,也是方法和流程。 步骤1:理清各种待办事项 当提到工作事项时,这通常指的是要完成或处理的工作任务或事务。这些事项可以包括以下内容: 任务分配:根据工作…...
电子商务员考试题库及答案(中级)--判断题
电子商务员题库 一、判断题 1.EDI就是按照商定的协议,将商业文件分类,并通过计算机网络,在贸易伙伴的计算机网络系统之间进行数据交换和自动处理。〔〕 2.相互通信的EDI的用户必须使用相同类型的计算机。〔 〕 3.EDI采用共同…...

(WAF)Web应用程序防火墙介绍
(WAF)Web应用程序防火墙介绍 1. WAF概述 Web应用程序防火墙(WAF)是一种关键的网络安全解决方案,用于保护Web应用程序免受各种网络攻击和威胁。随着互联网的不断发展,Web应用程序变得越来越复杂&#x…...
SpringMVC拦截器常见应用场景
在Spring MVC中,拦截器是通过实现HandlerInterceptor接口来定义的。该接口包含了三个方法: preHandle:在请求到达处理器之前执行,可以进行一些预处理操作。如果返回false,则请求将被拦截,不再继续执行后续的…...

爬虫:绕过5秒盾Cloudflare和DDoS-GUARD
本文章仅供技术研究参考,勿做它用! 5秒盾的特点 <title>Just a moment...</title> 返回的页面中不是目标数据,而是包含上面的代码:Just a moment... 或者第一次打开网页的时候: 这几个特征就是被Cloud…...
数据仓库环境下的超市进销存系统结构
传统的进销存系统建立的以单一数据库为中心的数据组织模式,已经无 法满足决策分析对数据库系统的要求,而数据仓库技术的出现和发展,为上述问题 的解决提供了强有力的工具和手段。数据仓库是一种对多个分布式的、异构的数据 库提供统一查询…...

leetcode:2011. 执行操作后的变量值(python3解法)
难度:简单 存在一种仅支持 4 种操作和 1 个变量 X 的编程语言: X 和 X 使变量 X 的值 加 1--X 和 X-- 使变量 X 的值 减 1 最初,X 的值是 0 给你一个字符串数组 operations ,这是由操作组成的一个列表,返回执行所有操作…...
ubuntu下mysql
安装: sudo apt update sudo apt install my_sql 安装客户端: sudo apt-get install mysql-client sudo apt-get install libmysqlclient-dev 启动服务 启动方式之一: sudo service mysql start 检查服务器状态方式之一:sudo …...
大模型从入门到应用——LangChain:链(Chains)-[链与索引:检索式问答]
分类目录:《大模型从入门到应用》总目录 下面这个示例展示了如何在索引上进行问答: from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import CharacterTextSplitte…...

【LeetCode-中等题】142. 环形链表 II
文章目录 题目方法一:哈希表set去重方法二:快慢指针 题目 方法一:哈希表set去重 思路:我们遍历链表中的每个节点,并将它记录下来;一旦遇到了此前遍历过的节点,就可以判定链表中存在环。借助哈希…...

Android TV开发之VerticalGridView
Android TV应用开发和手机应用开发是一样的,只是多了焦点控制,即选中变色。 androidx.leanback.widget.VerticalGridView 继承 BaseGridView , BaseGridView 继承 RecyclerView 。 所以 VerticalGridView 就是 RecyclerView ,使…...
SpringBoot+Vue项目添加腾讯云人脸识别
一、引言 人脸识别是一种基于人脸特征进行身份认证和识别的技术。它使用计算机视觉和模式识别的方法,通过分析图像或视频中的人脸特征,例如脸部轮廓、眼睛、鼻子、嘴巴等,来验证一个人的身份或识别出他们是谁。 人脸识别可以应用在多个领域…...
什么是IPv4?什么又是IPv6?
IPv4网络IPv4地址 IPv6网络IPv6地址 路由总结感谢 💖 hello大家好😊 IPv4网络 IPv4(Internet Protocol Version 4)是当今互联网上使用的主要网络协议。 IPv4地址 IPv4 地址有32位,通常使用点号分隔的四个十进制八位…...

飞腾FT-2000/4、D2000 log报错指导(3)
在爱好者群中遇见了很多的固件问题,这里总结记录了大家的交流内容和调试心得。主要是飞腾桌面CPU FT-2000/4 D2000相关的,包含uboot和UEFI。希望对大家调试有所帮助。 这个专题会持续更新,凑够一些就发。 23 在s3 唤醒时报错如下 check suspend ,Platform exception report…...

基于安卓的考研助手系统app 微信小程序
,设计并开发实用、方便的应用程序具有重要的意义和良好的市场前景。HBuilder技术作为当前最流行的操作平台,自然也存在着大量的应用服务需求。 本课题研究的是基于HBuilder技术平台的安卓的考研助手APP,开发这款安卓的考研助手APP主要是为了…...

Leetcode:238. 除自身以外数组的乘积【题解超详细】
纯C语言实现(小白也能看明白) 题目 给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数…...

基于单片机的智能数字电子秤proteus仿真设计
一、系统方案 1、当电子称开机时,单片机会进入一系列初始化,进入1602显示模式设定,如开关显示、光标有无设置、光标闪烁设置,定时器初始化,进入定时器模式,如初始值赋值。之后液晶会显示Welcome To Use Ele…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
DiscuzX3.5发帖json api
参考文章:PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下,适配我自己的需求 有一个站点存在多个采集站,我想通过主站拿标题,采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...