当前位置: 首页 > news >正文

C#,数值计算——调适数值积分法(adaptive quadrature)的计算方法与源程序

 

1 文本格式

using System;

namespace Legalsoft.Truffer
{
    /// <summary>
    /// 调适数值积分法
    /// adaptive quadrature
    /// </summary>
    public class Adapt
    {
        private double x1 { get; } = 0.942882415695480;
        private double x2 { get; } = 0.641853342345781;
        private double x3 { get; } = 0.236383199662150;
        private double TOL { get; set; }
        private double toler { get; set; }
        private double alpha { get; set; }
        private double beta { get; set; }
        private double[] x { get; set; }

        public bool terminate { get; set; }
        public bool out_of_tolerance { get; set; }

        public Adapt(double tol)
        {
            alpha = Math.Sqrt(2.0 / 3.0);
            beta = 1.0 / Math.Sqrt(5.0);
            x = new double[] { 0, -x1, -alpha, -x2, -beta, -x3, 0.0, x3, beta, x2, alpha, x1 };

            this.TOL = tol;
            this.terminate = true;
            this.out_of_tolerance = false;
            double EPS = float.Epsilon;
            if (TOL < 10.0 * EPS)
            {
                TOL = 10.0 * EPS;
            }
        }

        public double integrate(UniVarRealValueFun func, double a, double b)
        {
            double[] y = new double[13];

            double m = 0.5 * (a + b);
            double h = 0.5 * (b - a);
            double fa = y[0] = func.funk(a);
            double fb = y[12] = func.funk(b);
            for (int i = 1; i < 12; i++)
            {
                y[i] = func.funk(m + x[i] * h);
            }
            double i2 = (h / 6.0) * (y[0] + y[12] + 5.0 * (y[4] + y[8]));
            double i1 = (h / 1470.0) * (77.0 * (y[0] + y[12]) + 432.0 * (y[2] + y[10]) + 625.0 * (y[4] + y[8]) + 672.0 * y[6]);
            double xs = h * (0.0158271919734802 * (y[0] + y[12]) + 0.0942738402188500 * (y[1] + y[11]) + 0.155071987336585 * (y[2] + y[10]) + 0.188821573960182 * (y[3] + y[9]) + 0.199773405226859 * (y[4] + y[8]) + 0.224926465333340 * (y[5] + y[7]) + 0.242611071901408 * y[6]);
            double erri1 = Math.Abs(i1 - xs);
            double erri2 = Math.Abs(i2 - xs);
            double r = (erri2 != 0.0) ? erri1 / erri2 : 1.0;
            toler = (r > 0.0 && r < 1.0) ? TOL / r : TOL;
            //if (xs == 0.0)
            if (Math.Abs(xs) <= float.Epsilon)
            {
                xs = b - a;
            }
            xs = Math.Abs(xs);
            return adaptlob(func, a, b, fa, fb, xs);
        }

        public double adaptlob(UniVarRealValueFun func, double a, double b, double fa, double fb, double xs)
        {
            double m = 0.5 * (a + b);
            double h = 0.5 * (b - a);
            double mll = m - alpha * h;
            double ml = m - beta * h;
            double mr = m + beta * h;
            double mrr = m + alpha * h;
            double fmll = func.funk(mll);
            double fml = func.funk(ml);
            double fm = func.funk(m);
            double fmr = func.funk(mr);
            double fmrr = func.funk(mrr);
            double i2 = h / 6.0 * (fa + fb + 5.0 * (fml + fmr));
            double i1 = h / 1470.0 * (77.0 * (fa + fb) + 432.0 * (fmll + fmrr) + 625.0 * (fml + fmr) + 672.0 * fm);

            if (Math.Abs(i1 - i2) <= toler * xs || mll <= a || b <= mrr)
            {
                if ((mll <= a || b <= mrr) && terminate)
                {
                    out_of_tolerance = true;
                    terminate = false;
                }
                return i1;
            }
            else
            {
                return adaptlob(func, a, mll, fa, fmll, xs) +
                    adaptlob(func, mll, ml, fmll, fml, xs) +
                    adaptlob(func, ml, m, fml, fm, xs) +
                    adaptlob(func, m, mr, fm, fmr, xs) +
                    adaptlob(func, mr, mrr, fmr, fmrr, xs) +
                    adaptlob(func, mrr, b, fmrr, fb, xs);
            }
        }
    }
}
 

2 代码格式

using System;namespace Legalsoft.Truffer
{/// <summary>/// 调适数值积分法/// adaptive quadrature/// </summary>public class Adapt{private double x1 { get; } = 0.942882415695480;private double x2 { get; } = 0.641853342345781;private double x3 { get; } = 0.236383199662150;private double TOL { get; set; }private double toler { get; set; }private double alpha { get; set; }private double beta { get; set; }private double[] x { get; set; }public bool terminate { get; set; }public bool out_of_tolerance { get; set; }public Adapt(double tol){alpha = Math.Sqrt(2.0 / 3.0);beta = 1.0 / Math.Sqrt(5.0);x = new double[] { 0, -x1, -alpha, -x2, -beta, -x3, 0.0, x3, beta, x2, alpha, x1 };this.TOL = tol;this.terminate = true;this.out_of_tolerance = false;double EPS = float.Epsilon;if (TOL < 10.0 * EPS){TOL = 10.0 * EPS;}}public double integrate(UniVarRealValueFun func, double a, double b){double[] y = new double[13];double m = 0.5 * (a + b);double h = 0.5 * (b - a);double fa = y[0] = func.funk(a);double fb = y[12] = func.funk(b);for (int i = 1; i < 12; i++){y[i] = func.funk(m + x[i] * h);}double i2 = (h / 6.0) * (y[0] + y[12] + 5.0 * (y[4] + y[8]));double i1 = (h / 1470.0) * (77.0 * (y[0] + y[12]) + 432.0 * (y[2] + y[10]) + 625.0 * (y[4] + y[8]) + 672.0 * y[6]);double xs = h * (0.0158271919734802 * (y[0] + y[12]) + 0.0942738402188500 * (y[1] + y[11]) + 0.155071987336585 * (y[2] + y[10]) + 0.188821573960182 * (y[3] + y[9]) + 0.199773405226859 * (y[4] + y[8]) + 0.224926465333340 * (y[5] + y[7]) + 0.242611071901408 * y[6]);double erri1 = Math.Abs(i1 - xs);double erri2 = Math.Abs(i2 - xs);double r = (erri2 != 0.0) ? erri1 / erri2 : 1.0;toler = (r > 0.0 && r < 1.0) ? TOL / r : TOL;//if (xs == 0.0)if (Math.Abs(xs) <= float.Epsilon){xs = b - a;}xs = Math.Abs(xs);return adaptlob(func, a, b, fa, fb, xs);}public double adaptlob(UniVarRealValueFun func, double a, double b, double fa, double fb, double xs){double m = 0.5 * (a + b);double h = 0.5 * (b - a);double mll = m - alpha * h;double ml = m - beta * h;double mr = m + beta * h;double mrr = m + alpha * h;double fmll = func.funk(mll);double fml = func.funk(ml);double fm = func.funk(m);double fmr = func.funk(mr);double fmrr = func.funk(mrr);double i2 = h / 6.0 * (fa + fb + 5.0 * (fml + fmr));double i1 = h / 1470.0 * (77.0 * (fa + fb) + 432.0 * (fmll + fmrr) + 625.0 * (fml + fmr) + 672.0 * fm);if (Math.Abs(i1 - i2) <= toler * xs || mll <= a || b <= mrr){if ((mll <= a || b <= mrr) && terminate){out_of_tolerance = true;terminate = false;}return i1;}else{return adaptlob(func, a, mll, fa, fmll, xs) +adaptlob(func, mll, ml, fmll, fml, xs) +adaptlob(func, ml, m, fml, fm, xs) +adaptlob(func, m, mr, fm, fmr, xs) +adaptlob(func, mr, mrr, fmr, fmrr, xs) +adaptlob(func, mrr, b, fmrr, fb, xs);}}}
}

相关文章:

C#,数值计算——调适数值积分法(adaptive quadrature)的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 调适数值积分法 /// adaptive quadrature /// </summary> public class Adapt { private double x1 { get; } 0.942882415695480; private …...

微信小程序发布迭代版本后如何提示用户强制更新新版本

在点击小程序发布的时候选择&#xff0c;升级选项 之前用户使用过的再打开小程序页面就会弹出升级弹窗modal...

星际争霸之小霸王之小蜜蜂(七)--消失的子弹

目录 前言 一、删除子弹 二、限制子弹数量 三、继续重构代码 总结 前言 昨天我们已经让子弹飞了起来&#xff0c;但是会面临一个和之前小蜜蜂一样的问题&#xff0c;小蜜蜂的行动应该限制在窗口内&#xff0c;那么子弹也是有相同之处&#xff0c;也需要限制一个移动范围&…...

Hadoop入门机安装hadoop

0目录 1.Hadoop入门 2.linux安装hadoop 1.Hadoop入门 定义 Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下&#xff0c;开发分布式程序。充分利用集群的威力进行高速运算和存储。 优势 高可靠性&#xff1a;Hadoop底层维护多…...

cookie技术介绍

title: cookie技术 date: 2023-08-27 21:34:19 tags: [cookie, 网络, http] categories: 网络 我们经常说的cookie缓存数据&#xff0c;允许cookie是什么意思? Cookie也被称作Cookies&#xff0c;它是一种让网站的服务器端可以把少量数据存储在客户端的硬盘或内存中&#x…...

网络摄像头:SparkoCam Crack

SparkoCam 网络摄像头软件 SparkoCam 是一款网络摄像头和视频效果软件&#xff0c;用于广播实时网络摄像头效果并将其应用到视频聊天和录音中。 使用佳能/尼康数码单反相机作为常规网络摄像头通过向实时视频聊天和视频录制添加酷炫的网络摄像头效果和图形来增强 USB 网络摄像…...

【缓存设计】记一种不错的缓存设计思路

文章目录 前言场景设计思路小结 前言 之前与同事讨论接口性能问题时听他介绍了一种缓存设计思路&#xff0c;觉得不错&#xff0c;做个记录供以后参考。 场景 假设有个以下格式的接口&#xff1a; GET /api?keys{key1,key2,key3,...}&types{1,2,3,...}其中 keys 是业务…...

微信小程序大学校园二手教材与书籍拍卖系统设计与实现

摘 要 随着应用技术的发展以及电子商务平台的崛起&#xff0c;利用线上平台实现的二手交易为传统的二手交易市场注入了新的生机&#xff0c;大学校园内的新生和应届毕业生的相互交替产生了巨大的二手交易空间&#xff0c;同时考虑到环保和资源再利用&#xff0c;大学校园的书籍…...

涛然自得周刊(第06期):韩版苏东坡的突围

作者&#xff1a;何一涛 日期&#xff1a;2023 年 8 月 27 日 涛然自得周刊主要精选作者阅读过的书影音内容&#xff0c;不定期发布。历史周刊内容可以看这里。 电影 兹山鱼谱 讲述丁若铨因政治事件被贬黜到了遥远的黑山岛。来到岛上后&#xff0c;丁被大自然环境疗愈&#…...

DOCKER 部署 webman项目

# 设置基础镜像 FROM php:8.2-fpm# 安装必要的软件包和依赖项 RUN apt-get update && apt-get install -y \nginx \libzip-dev \libpng-dev \libjpeg-dev \libfreetype6-dev \&& rm -rf /var/lib/apt/lists/*# 安装 PHP 扩展 RUN docker-php-ext-configure gd …...

LLMs:LangChain-Chatchat(一款可实现本地知识库问答应用)的简介、安装、使用方法之详细攻略

LLMs&#xff1a;LangChain-Chatchat(一款可实现本地知识库问答应用)的简介、安装、使用方法之详细攻略 目录 LangChain-Chatchat的简介 1、原理图解 2、文档处理实现流程 1、模型支持 (1)、LLM 模型支持 (2)、Embedding 模型支持 LangChain-Chatchat的安装 1、镜像部署…...

Qt 解析XML文件 QXmlStreamReader

如何使用QXmlStreamReader来解析格式良好的XML&#xff0c;Qt的文档中指出&#xff0c;它是一种更快、更方便的Qt自己的SAX解析器&#xff08;QXmlSimpleReader&#xff09;的替代&#xff0c;它也较快&#xff0c;在某种情况下&#xff0c;比DOM&#xff08;QDomDocument&…...

图像线段检测几种方法

1、方法一 当我将OpenCV提升到4.1.0时&#xff0c;LineSegmentDetector&#xff08;LSD&#xff09;消失了。 OpenCV-contrib有一个名为FastLineDetector的东西&#xff0c;如果它被用作LSD的替代品似乎很好。如果你有点感动&#xff0c;你会得到与LSD几乎相同的结果。 2、方…...

【Vue2.0源码学习】生命周期篇-初始化阶段(initEvents)

文章目录 1. 前言2. 解析事件3. initEvents函数分析4. 总结 1. 前言 本篇文章介绍生命周期初始化阶段所调用的第二个初始化函数——initEvents。从函数名字上来看&#xff0c;这个初始化函数是初始化实例的事件系统。我们知道&#xff0c;在Vue中&#xff0c;当我们在父组件中…...

SQL高级知识点

MySQL基础 1、安装 1)设置编码 2)设置密码 2、配置文件&#xff1a;my.ini、my.cnf 1)设置端口号 port3306 2)设置编码 default-character-setutf8character-set-serverutf8 3)存储引擎 default-storage-engineINNODB 4)最大连接数 max_connections100 注意&…...

【安全】原型链污染 - Code-Breaking 2018 Thejs

目录 准备工作 环境搭建 加载项目 复现 代码审计 payload 总结 准备工作 环境搭建 Nodejs BurpSuite 加载项目 项目链接 ① 下载好了cmd切进去 ② 安装这个项目 可以检查一下 ③运行并监听 可以看到已经在3000端口启动了 复现 代码审计 const fs require(fs) cons…...

【架构】探索计算机处理器的世界:ARM和x86架构解析及指令集

目录 导语ARM架构x86架构AMD公司对比与应用不同架构处理器的指令集结语 导语 计算机处理器是数字化时代的核心引擎&#xff0c;而在众多处理器架构中&#xff0c;ARM和x86是备受关注的三个。本文将带您深入探索这三个架构&#xff0c;介绍它们的特点、公司背景以及应用领域。让…...

SpringBoot权限认证

SpringBoot的安全 常用框架&#xff1a;Shrio,SpringSecurity 两个功能&#xff1a; Authentication 认证Authorization 授权 权限&#xff1a; 功能权限访问权限菜单权限 原来用拦截器、过滤器来做&#xff0c;代码较多。现在用框架。 SpringSecurity 只要引入就可以使…...

OpenGL-入门-BMP像素图glReadPixels

glReadPixels函数用于从帧缓冲区中读取像素数据。它可以用来获取屏幕上特定位置的像素颜色值或者获取一块区域内的像素数据。下面是该函数的基本语法&#xff1a; void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid *da…...

同源策略以及SpringBoot的常见跨域配置

先说明一个坑。在跨域的情况下&#xff0c;浏览器针对复杂请求&#xff0c;会发起预检OPTIONS请求。如果服务端对OPTIONS进行拦截&#xff0c;并返回非200的http状态码。浏览器一律提示为cors error。 一、了解跨域 1.1 同源策略 浏览器的同源策略&#xff08;Same-Origin Po…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...