前端优化页面加载速度的方法(持续更新)
提速方法方向
延迟脚本加载
- 使用
async
属性:
在这种方法中,脚本将在下载完成后立即执行,而不会阻塞其他页面资源的加载和渲染。这适用于那些不依赖于其他脚本和页面内容的脚本,例如分析脚本等。示例如下:
html <script src="your-script.js" async></script>
注意:由于脚本是异步加载的,它们可能不会按照它们在 HTML 中出现的顺序执行,因此需要谨慎处理脚本之间的依赖关系。
- 使用
defer
属性:
使用defer
属性的脚本会在整个文档解析完毕后、DOMContentLoaded 事件之前执行。这使得它们不会阻塞 HTML 的解析,但会在文档解析完成后按顺序执行。适用于那些需要在文档完全加载后执行的脚本,例如操作 DOM 的脚本。
html <script src="your-script.js" defer></script>
使用这些属性时,要确保你的脚本不会依赖于页面中尚未加载的元素,否则可能会出现错误。根据脚本的性质和页面结构,选择适合的加载方式,以实现更好的性能和用户体验。
对于 Vue.js,通常不需要在 <script>
标签上使用 async
或 defer
属性,因为 Vue.js 在加载和初始化时不会阻塞页面的加载和渲染。Vue.js 应用通常在页面加载完成后再初始化,这使得它们不会影响页面的呈现速度。
当浏览器遇到普通的 Vue.js <script>
标签时,它会按顺序下载并执行脚本。Vue.js 在脚本执行期间会注册组件、创建实例等,但这些操作通常不会阻塞页面其他内容的加载。
简而言之,对于 Vue.js 应用,不需要显式地使用 async
或 defer
属性。
CDN
内容分发网络(CDN)是一种用于提供高性能、可靠性和可扩展性的网络架构,旨在将内容(例如网页、图像、视频等)传递给最终用户。CDN 的主要目标是减少用户访问内容时的延迟,提高内容的可用性,并减轻源服务器的负载。
对于常见的库和框架(例如 jQuery、Vue.js、Bootstrap 等),您可以使用它们在 CDN 上托管的版本。这些资源通常已经在全球范围内进行了缓存,并能够更快地被用户加载。示例代码:
<!-- 使用外部托管的 jQuery --><script src="https://cdn.jsdelivr.net/npm/jquery@3.6.0/dist/jquery.min.js"></script><!-- 使用外部托管的 Vue.js --><script src="https://cdn.jsdelivr.net/npm/vue@2.6.14/dist/vue.js"></script>
雪碧图
将多个小图标合并成一个雪碧图,减少请求次数;但是制作雪碧图和使用都不轻松。
懒加载
在 Vue 3 中实现组件的懒加载可以通过使用动态导入(Dynamic Import)的方式来完成。这可以帮助你在需要的时候才加载特定的组件,从而提高应用程序的性能。
以下是在 Vue 3 中实现组件懒加载的步骤:
1. 首先,确保已经正确地设置了 Vue 3 的开发环境,并且项目中使用了 Vue Router(如果需要在路由中进行懒加载)。
2. 在需要懒加载的地方,使用动态导入来加载组件。例如,在路由配置中,可以这样做:
const Foo = () => import('./components/Foo.vue');
const Bar = () => import('./components/Bar.vue');const routes = [{ path: '/foo', component: Foo },{ path: '/bar', component: Bar },// ...
];
3. 在上面的例子中,`import('./components/Foo.vue')` 这样的语法会返回一个 Promise,这个 Promise 在组件加载完成后会被解析。Vue Router 会自动处理这些 Promise 并加载对应的组件。
4. 如果你需要在组件内部也进行懒加载,可以使用 `defineAsyncComponent` 函数。这个函数是 Vue 3 提供的一个工具,用于创建异步组件。
<template><div><!-- 按需加载 MyComponent 组件 --><MyComponent /></div>
</template><script>
import { defineAsyncComponent } from 'vue';// 创建异步组件const MyComponent = defineAsyncComponent(() => import('./MyComponent.vue'));export default {components: {MyComponent,},
};
</script>
在上面的代码中,`defineAsyncComponent` 会返回一个异步组件,它在被渲染时才会动态加载 `MyComponent.vue`。
这些就是在 Vue 3 中实现组件懒加载的基本步骤。通过懒加载,可以在需要的时候按需加载组件,提高应用程序的性能和加载速度。
细节提速
border等不用0px
border:0和border:none比肯定是要更耗时的,border:0需要渲染border,而none不需要
相关文章:
前端优化页面加载速度的方法(持续更新)
提速方法方向 延迟脚本加载 使用 async 属性: 在这种方法中,脚本将在下载完成后立即执行,而不会阻塞其他页面资源的加载和渲染。这适用于那些不依赖于其他脚本和页面内容的脚本,例如分析脚本等。示例如下: html …...

利用SSL证书的SNI特性建立自己的爬虫ip服务器
今天我要和大家分享一个关于自建多域名HTTPS爬虫ip服务器的知识,让你的爬虫ip服务器更加强大!无论是用于数据抓取、反爬虫还是网络调试,自建一个支持多个域名的HTTPS爬虫ip服务器都是非常有价值的。本文将详细介绍如何利用SSL证书的SNI&#…...
HTML和CSS
HTML HTML(Hyper Text Markup Language):超文本语言 超文本:超越了文本的限制,比普通文本更强大。除了文字信息,还可以定义图片、音频、视频等内容。 标记语言:由标签构成的语言 HTML标签都是预定义好的。例如:使用&l…...
C#的IndexOf
在 C# 中,IndexOf 是一个字符串、数组或列表的方法,用于查找指定元素的第一个匹配项的索引。它返回一个整数值,表示匹配项在集合中的位置,如果未找到匹配项,则返回 -1。 IndexOf 方法有多个重载形式,可以根…...

深度学习2.神经网络、机器学习、人工智能
目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、神经网络…...

利用LLM模型微调的短课程;钉钉宣布开放智能化底座能力
🦉 AI新闻 🚀 钉钉宣布开放智能化底座能力AI PaaS,推动企业数智化转型发展 摘要:钉钉在生态大会上宣布开放智能化底座能力AI PaaS,与生态伙伴探寻企业服务的新发展道路。AI PaaS结合5G、云计算和人工智能技术的普及和…...
软件工程(七) UML之用例图详解
1、UML-4+1视图 UML-4+1视图将会与后面的架构4+1视图会一一对应上 视图往往出现在什么场景:我们看待一个事物,我们觉得它很复杂,难以搞清楚,为了化繁为简,我们会从一个侧面去看,这就是视图。而4+1视图就是分不同角度去看事物。 逻辑视图(logical view) 一般使用类与对…...

pd.cut()函数--Pandas
1. 函数功能 将连续性数值进行离散化处理:如对年龄、消费金额等进行分组 2. 函数语法 pandas.cut(x, bins, rightTrue, labelsNone, retbinsFalse, precision3, include_lowestFalse, duplicatesraise, orderedTrue)3. 函数参数 参数含义x要离散分箱操作的数组&…...
DataBinding的基本使用
目录 一、MVC、MVP和MVVM框架的使用场景二、Java使用 一、MVC、MVP和MVVM框架的使用场景 MVC: 适用于小型项目,够灵活, 缺点:Activity不仅要做View的事情还要做控制和模型的处理,导致Activity太过臃肿,管理…...

eslint和prettier格式化冲突
下载插件 ESLint 和 Prettier ESLint 进入setting.json中 setting.json中配置 {"editor.tabSize": 2,"editor.linkedEditing": true,"security.workspace.trust.untrustedFiles": "open","git.autofetch": true,"…...

matlab使用教程(26)—常微分方程的求解
1.求解非刚性 ODE 本页包含两个使用 ode45 来求解非刚性常微分方程的示例。MATLAB 提供几个非刚性 ODE 求解器。 • ode45 • ode23 • ode78 • ode89 • ode113 对于大多数非刚性问题,ode45 的性能最佳。但对于允许较宽松的误差容限或刚度适中的问题&…...

尚硅谷宋红康MySQL笔记 14-18
是记录,不会太详细,受本人知识限制会有错误,会有个人的理解在里面 第14章 视图 了解一下,数据库的常见对象 对象描述表(TABLE)表是存储数据的逻辑单元,以行和列的形式存在,列就是字段,行就是记…...

香港全新的虚拟资产服务商发牌制度
香港证监会2023年2月20日通告,原有虛擬資產交易平台如要符合資格參與當作為獲發牌的安排,必須在2023 年6 月1 日至2024 年2 月29 日期間(即由2023 年6 月1 日37起計九個月內)內,根據《打擊洗錢條例》下的虛擬資產服務提供者制度在網上提交完全…...
C# 泛型
目录 一、前言 二、相关内容 1、什么是泛型? 2、泛型类 3、泛型方法 4、限定类型参数 4.1、 类型参数的基本约束 4.2、接口约束 4.3、基类约束 4.5、泛型参数与限定类型参数的关系 4.6、自定义约束 5、使用泛型的好处 5.1、代码复用性 5.2、类型安全…...

servlet,Filter,责任的设计模式,静态代理
servlet servlet是前端和数据库交互的一个桥梁 静态网页资源的技术:在前端整个运行的过程中 我们的网页代码不发生改变的这种情况就称为静态的网页资源技术动态网页资源的技术:在前端运行的过程中 我们的前端页面代码会发生改变的这种情况就称为 动态的网…...
C++中的运算符总结(5):按位运算符(上)
C中的运算符总结(5):按位运算符(上) 9、按位运算符 NOT( ~)、 AND( &)、 OR( |)和 XOR( ^) 逻辑运算符和…...
8.Oracle中多表连接查询方式
表连接分类: 内连接、外连接、交叉连接、自连接 1 内连接 内连接是一种常见的多表关联查询方式,一般使用关键字INNER JOIN来实现。其中,INNER关键字可以省略,当只使用JOIN关键字时,语句只表示内连接操作。在使用内连…...

Linux 安装mysql(ARM架构)
添加mysql用户组和mysql用户 安装依赖libaio yum install -y libaio* 下载Mysql wget https://obs.cn-north-4.myhuaweicloud.com/obs-mirror-ftp4/database/mysql-5.7.27-aarch64.tar.gz安装mysql 解压Mysql tar xvf mysql-5.7.27-aarch64.tar.gz -C /usr/local/ 重命名 …...
git:git clone报错提示permissions xxxx for xxxxxx are too open
问题: 如题 参考: [密钥权限过大错误]ssh “permissions are too open” error 解决办法: 将id_rsa和id_rsa.pub的权限改为600...
elasticSearch数据的导入和导出
http://wget https://nodejs.org/dist/v10.13.0/node-v10.13.0-linux-x64.tar.gz 解压即可: 1、将索引中的数据导出到本地 myindex 是我的索引 elasticdump --inputhttp://localhost:9200/myindex--output/home/date/myindex.json2、将本地数据导入es中 elasticdum…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...

vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...