当前位置: 首页 > news >正文

【多思路解决喝汽水问题】1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水

题目内容

喝汽水问题

喝汽水,1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水(编程实现)。

题目分析

数学思路分析

根据给出的问题和引用内容,我们可以得出答案。

首先,我们用20元购买了20瓶汽水,现在有20个空瓶。

接下来,我们将这20个空瓶兑换成新的10瓶汽水

然后,将这10个空瓶再次兑换成新的5瓶汽水,此时还剩下一个空瓶。

我们将这个剩余的空瓶与后面的空瓶结合兑换,得到1瓶新的汽水

因此,到目前为止,我们总共获得了20+10+5+2+1+1=39瓶汽水。

所以,给了20元我们可以喝到39瓶汽水。

编程思路分析

思路一 循环实现

total = 20;  //汽水总数
    int k = 0;     //空瓶数
    int s = 0 ;     //剩余空瓶

第一次(k=20)。

第二次(k=20/2=10,s=20%2=0),此时total又增加10了;

第三次(k=10/2=5,s=10%2=0);

第四次(k=5/2=2, s=5%2=1,);

第五次(k=2/2=1,s=2%2=0);

(s=1)。

#include<stdio.h>
#include<stdlib.h>
int main()
{int total = 20;  //汽水总数int k = 0;     //空瓶数int s = 0 ;     //剩余空瓶k = 20;while(k>=1){k= k+s;total = total+k/2;//原有的汽水数+换来的汽水数s = k%2;k=k/2;//两个空瓶子换1个新汽水,汽水喝完就是1个瓶子}printf("%d\n",total);system("pause");return 0;
}

思路二 递归实现

第一次和第二次买汽水 ,分别花了一块钱(+2),

从第三次开始,每次去花一块钱买汽水,再加上用第一次和第二次的空瓶子可以换来一瓶,一共可以获得两瓶汽水(+2),

第四次拿着第三次那两空瓶子,再花一块钱,又可以得到两瓶汽水(+2),

第五次,第六次,以此类推,接下来的每一次都是相当于花1元钱和两个空瓶子,来获得两瓶新的汽水

那么到最后一次时,手里已经没有钱了,即此时只有两个空瓶子换来一瓶汽水(+1)。

去买汽水的过程定义为一个函数就可以递归计算最终结果。

#include<stdio.h>
#include<stdlib.h>
int  Buy(int money)
{if(money==1)return 1;else return Buy(money-1)+2;
}
int main()
{int money = 20;printf("%d\n",Buy(money));system("pause");return 0;
}


 

相关文章:

【多思路解决喝汽水问题】1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水

题目内容 喝汽水问题 喝汽水&#xff0c;1瓶汽水1元&#xff0c;2个空瓶可以换一瓶汽水&#xff0c;给20元&#xff0c;可以喝多少汽水&#xff08;编程实现&#xff09;。 题目分析 数学思路分析 根据给出的问题和引用内容&#xff0c;我们可以得出答案。 首先&#xff…...

P1591 阶乘数码(Java高精度)

题目描述 求 n ! n! n! 中某个数码出现的次数。 输入格式 第一行为 t ( t ≤ 10 ) t(t \leq 10) t(t≤10)&#xff0c;表示数据组数。接下来 t t t 行&#xff0c;每行一个正整数 n ( n ≤ 1000 ) n(n \leq 1000) n(n≤1000) 和数码 a a a。 输出格式 对于每组数据&a…...

Mybatis的动态SQL及关键属性和标识的区别(对SQL更灵活的使用)

&#xff08; 虽然文章中有大多文本内容&#xff0c;想了解更深需要耐心看完&#xff0c;必定大有受益 &#xff09; 目录 一、动态SQL ( 1 ) 是什么 ( 2 ) 作用 ( 3 ) 优点 ( 4 ) 特殊标签 ( 5 ) 演示 二、#和$的区别 2.1 #使用 ( 1 ) #占位符语法 ( 2 ) #优点 2.…...

mysql下载

网址 MySQL :: Download MySQL Community Serverhttps://dev.mysql.com/downloads/mysql/ 2、选择MSI进行安装 3、这里我选择离线安装 4、这里我选择直接下载 5、等待下载安装即可...

聚合函数与窗口函数

聚合函数 回答一 聚合函数&#xff08;Aggregate Functions&#xff09;是SQL中的函数&#xff0c;用于对一组数据进行计算&#xff0c;并返回单个结果。聚合函数通常用于统计和汇总数据&#xff0c;包括计算总和、平均值、计数、最大值和最小值等。 以下是一些常见的聚合函…...

c语言实现堆

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、树1、树的概念2、树的相关概念3、树的表示 二、二叉树1、二叉树概念2、特殊的二叉树3、二叉树的性质4、二叉树的顺序结构5、二叉树的链式结构 三、堆(二叉树…...

ubuntu 如何将文件打包成tar.gz

要将文件打包成.tar.gz文件&#xff0c;可以使用以下命令&#xff1a; tar -czvf 文件名.tar.gz 文件路径 其中&#xff0c;-c表示创建新的归档文件&#xff0c;-z表示使用gzip进行压缩&#xff0c;-v表示显示详细的打包过程&#xff0c;-f表示指定归档文件的名称。 例如&am…...

前端优化页面加载速度的方法(持续更新)

提速方法方向 延迟脚本加载 使用 async 属性&#xff1a; 在这种方法中&#xff0c;脚本将在下载完成后立即执行&#xff0c;而不会阻塞其他页面资源的加载和渲染。这适用于那些不依赖于其他脚本和页面内容的脚本&#xff0c;例如分析脚本等。示例如下&#xff1a; html …...

利用SSL证书的SNI特性建立自己的爬虫ip服务器

今天我要和大家分享一个关于自建多域名HTTPS爬虫ip服务器的知识&#xff0c;让你的爬虫ip服务器更加强大&#xff01;无论是用于数据抓取、反爬虫还是网络调试&#xff0c;自建一个支持多个域名的HTTPS爬虫ip服务器都是非常有价值的。本文将详细介绍如何利用SSL证书的SNI&#…...

HTML和CSS

HTML HTML(Hyper Text Markup Language):超文本语言 超文本&#xff1a;超越了文本的限制&#xff0c;比普通文本更强大。除了文字信息&#xff0c;还可以定义图片、音频、视频等内容。 标记语言&#xff1a;由标签构成的语言 HTML标签都是预定义好的。例如&#xff1a;使用&l…...

C#的IndexOf

在 C# 中&#xff0c;IndexOf 是一个字符串、数组或列表的方法&#xff0c;用于查找指定元素的第一个匹配项的索引。它返回一个整数值&#xff0c;表示匹配项在集合中的位置&#xff0c;如果未找到匹配项&#xff0c;则返回 -1。 IndexOf 方法有多个重载形式&#xff0c;可以根…...

深度学习2.神经网络、机器学习、人工智能

目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、神经网络…...

利用LLM模型微调的短课程;钉钉宣布开放智能化底座能力

&#x1f989; AI新闻 &#x1f680; 钉钉宣布开放智能化底座能力AI PaaS&#xff0c;推动企业数智化转型发展 摘要&#xff1a;钉钉在生态大会上宣布开放智能化底座能力AI PaaS&#xff0c;与生态伙伴探寻企业服务的新发展道路。AI PaaS结合5G、云计算和人工智能技术的普及和…...

软件工程(七) UML之用例图详解

1、UML-4+1视图 UML-4+1视图将会与后面的架构4+1视图会一一对应上 视图往往出现在什么场景:我们看待一个事物,我们觉得它很复杂,难以搞清楚,为了化繁为简,我们会从一个侧面去看,这就是视图。而4+1视图就是分不同角度去看事物。 逻辑视图(logical view) 一般使用类与对…...

pd.cut()函数--Pandas

1. 函数功能 将连续性数值进行离散化处理&#xff1a;如对年龄、消费金额等进行分组 2. 函数语法 pandas.cut(x, bins, rightTrue, labelsNone, retbinsFalse, precision3, include_lowestFalse, duplicatesraise, orderedTrue)3. 函数参数 参数含义x要离散分箱操作的数组&…...

DataBinding的基本使用

目录 一、MVC、MVP和MVVM框架的使用场景二、Java使用 一、MVC、MVP和MVVM框架的使用场景 MVC&#xff1a; 适用于小型项目&#xff0c;够灵活&#xff0c; 缺点&#xff1a;Activity不仅要做View的事情还要做控制和模型的处理&#xff0c;导致Activity太过臃肿&#xff0c;管理…...

eslint和prettier格式化冲突

下载插件 ESLint 和 Prettier ESLint 进入setting.json中 setting.json中配置 {"editor.tabSize": 2,"editor.linkedEditing": true,"security.workspace.trust.untrustedFiles": "open","git.autofetch": true,"…...

matlab使用教程(26)—常微分方程的求解

1.求解非刚性 ODE 本页包含两个使用 ode45 来求解非刚性常微分方程的示例。MATLAB 提供几个非刚性 ODE 求解器。 • ode45 • ode23 • ode78 • ode89 • ode113 对于大多数非刚性问题&#xff0c;ode45 的性能最佳。但对于允许较宽松的误差容限或刚度适中的问题&…...

尚硅谷宋红康MySQL笔记 14-18

是记录&#xff0c;不会太详细&#xff0c;受本人知识限制会有错误&#xff0c;会有个人的理解在里面 第14章 视图 了解一下&#xff0c;数据库的常见对象 对象描述表(TABLE)表是存储数据的逻辑单元&#xff0c;以行和列的形式存在&#xff0c;列就是字段&#xff0c;行就是记…...

香港全新的虚拟资产服务商发牌制度

香港证监会2023年2月20日通告&#xff0c;原有虛擬資產交易平台如要符合資格參與當作為獲發牌的安排&#xff0c;必須在2023 年6 月1 日至2024 年2 月29 日期間(即由2023 年6 月1 日37起計九個月內)內&#xff0c;根據《打擊洗錢條例》下的虛擬資產服務提供者制度在網上提交完全…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

规则与人性的天平——由高考迟到事件引发的思考

当那位身着校服的考生在考场关闭1分钟后狂奔而至&#xff0c;他涨红的脸上写满绝望。铁门内秒针划过的弧度&#xff0c;成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定"&#xff0c;构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...

WEB3全栈开发——面试专业技能点P4数据库

一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库&#xff0c;基于 mysql 库改进而来&#xff0c;具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点&#xff1a; 支持 Promise / async-await&#xf…...

高分辨率图像合成归一化流扩展

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 1 摘要 我们提出了STARFlow&#xff0c;一种基于归一化流的可扩展生成模型&#xff0c;它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流&#xff08;TARFlow&am…...