PRML笔记2-关于回归参数w的先验的理解
接上篇,现在考虑给w\boldsymbol{w}w加入先验,考虑最简单的假设,也就是w\boldsymbol{w}w服从均值为0,协方差矩阵为α−1I\alpha^{-1}\boldsymbol{I}α−1I的高斯分布。
p(w∣α)=N(w∣0,α−1I)=(α2π)(M+1)/2exp{−α2wTw}\begin{aligned} p(\boldsymbol{w}|\alpha)&=\mathcal{N}(\boldsymbol{w}|0,\alpha^{-1}\boldsymbol{I})\\ &=(\frac{\alpha}{2\pi})^{(M+1)/2}\exp\{-\frac{\alpha}{2}\boldsymbol{w}^T\boldsymbol{w}\} \end{aligned} p(w∣α)=N(w∣0,α−1I)=(2πα)(M+1)/2exp{−2αwTw}我们一步一步看一下给定(x,t,α,β)(\boldsymbol{x},\boldsymbol{t},\alpha,\beta)(x,t,α,β)后,参数w\boldsymbol{w}w的概率
p(w∣t)=p(t∣w)p(w)p(t)p(w∣t,x,α,β)=p(t∣w,x,α,β)p(w∣x,α,β)p(t∣x,α,β)\begin{aligned} p(\boldsymbol{w}|\boldsymbol{t})&=\frac{p(\boldsymbol{t}|\boldsymbol{w})p(\boldsymbol{w})}{p(\boldsymbol{t})}\\ p(\boldsymbol{w}|\boldsymbol{t},\boldsymbol{x},\alpha,\beta)&=\frac{p(\boldsymbol{t}|\boldsymbol{w},\boldsymbol{x},\alpha,\beta)p(\boldsymbol{w}|\boldsymbol{x},\alpha,\beta)}{p(\boldsymbol{t}|\boldsymbol{x},\alpha,\beta)} \end{aligned} p(w∣t)p(w∣t,x,α,β)=p(t)p(t∣w)p(w)=p(t∣x,α,β)p(t∣w,x,α,β)p(w∣x,α,β)
由于α\alphaα和ttt独立,因此上式似然函数p(t∣w,x,α,β)=p(t∣w,x,β)p(\boldsymbol{t}|\boldsymbol{w},\boldsymbol{x},\alpha,\beta)=p(\boldsymbol{t}|\boldsymbol{w},\boldsymbol{x},\beta)p(t∣w,x,α,β)=p(t∣w,x,β),而w\boldsymbol{w}w的先验我们已经有了假设,因此得到书上的结果(此处个人理解):
p(w∣x,t,α,β)∝p(t∣x,w,β)p(w∣α)p(\boldsymbol{w}|\boldsymbol{x},\boldsymbol{t},\alpha,\beta)\propto p(\boldsymbol{t}|\boldsymbol{x},\boldsymbol{w},\beta)p(\boldsymbol{w}|\alpha) p(w∣x,t,α,β)∝p(t∣x,w,β)p(w∣α)
现在成了,我们最大化后验概率求w\boldsymbol{w}w,变成了最大化似然函数p(t∣x,w,β)p(\boldsymbol{t}|\boldsymbol{x},\boldsymbol{w},\beta)p(t∣x,w,β)和先验概率p(w∣α)p(\boldsymbol{w}|\alpha)p(w∣α)乘积的值。由于p(t∣x,w,β)=∏n=1NN(tn∣y(xn,w),β−1)=∏n=1N1(2π)12β−12exp(tn−y(xn,w))2−2β−1p(\boldsymbol{t}|\boldsymbol{x},\boldsymbol{w},\beta)=\prod_{n=1}^N\mathcal{N}(t_n|y(x_n,\boldsymbol{w}),\beta^{-1})=\prod_{n=1}^N\frac{1}{(2\pi)^{\frac{1}{2}}\beta^{-\frac{1}{2}}}exp{\frac{(t_n-y(x_n,\boldsymbol{w}))^2}{-2\beta^{-1}}}p(t∣x,w,β)=n=1∏NN(tn∣y(xn,w),β−1)=n=1∏N(2π)21β−211exp−2β−1(tn−y(xn,w))2
p(w∣α)=N(w∣0,α−1I)=(α2π)(M+1)/2exp{−α2wTw}\begin{aligned} p(\boldsymbol{w}|\alpha)&=\mathcal{N}(\boldsymbol{w}|0,\alpha^{-1}\boldsymbol{I})\\ &=(\frac{\alpha}{2\pi})^{(M+1)/2}\exp\{-\frac{\alpha}{2}\boldsymbol{w}^T\boldsymbol{w}\} \end{aligned} p(w∣α)=N(w∣0,α−1I)=(2πα)(M+1)/2exp{−2αwTw}
因此
p(t∣x,w,β)p(w∣α)=[∏n=1N1(2π)12β−12exp(tn−y(xn,w))2−2β−1](α2π)(M+1)/2exp{−α2wTw}\begin{aligned} p(\boldsymbol{t}|\boldsymbol{x},\boldsymbol{w},\beta)p(\boldsymbol{w}|\alpha)& =\left[\prod_{n=1}^N\frac{1}{(2\pi)^{\frac{1}{2}}\beta^{-\frac{1}{2}}}exp{\frac{(t_n-y(x_n,\boldsymbol{w}))^2}{-2\beta^{-1}}}\right] \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2}\exp\{-\frac{\alpha}{2}\boldsymbol{w}^T\boldsymbol{w}\} \end{aligned} p(t∣x,w,β)p(w∣α)=[n=1∏N(2π)21β−211exp−2β−1(tn−y(xn,w))2](2πα)(M+1)/2exp{−2αwTw}两边取ln可得
lnp(t∣x,w,β)p(w∣α)=−β2∑n=1N{y(xn,w)−tn}2+N2lnβ−N2ln(2π)+M+12lnα−M+12ln2π−α2wTw\begin{aligned} \ln{p}(\boldsymbol{t}|\boldsymbol{x},\boldsymbol{w},\beta)p(\boldsymbol{w}|\alpha) &=-\frac{\beta}{2}\sum_{n=1}^N\{y(x_n,\boldsymbol{w})-t_n\}^2+\frac{N}{2}\ln{\beta}-\frac{N}{2}\ln{(2\pi)} +\frac{M+1}{2}\ln{\alpha}-\frac{M+1}{2}\ln{2\pi}-\frac{\alpha}{2}\boldsymbol{w}^T\boldsymbol{w} \end{aligned} lnp(t∣x,w,β)p(w∣α)=−2βn=1∑N{y(xn,w)−tn}2+2Nlnβ−2Nln(2π)+2M+1lnα−2M+1ln2π−2αwTw我们现在要找的是最可能的w\boldsymbol{w}w的值,因此只考虑与w\boldsymbol{w}w有关的部门,去掉常数可得:
lnp(t∣x,w,β)p(w∣α)=−β2∑n=1N{y(xn,w)−tn}2−α2wTw\begin{aligned} \ln{p}(\boldsymbol{t}|\boldsymbol{x},\boldsymbol{w},\beta)p(\boldsymbol{w}|\alpha)&=-\frac{\beta}{2}\sum_{n=1}^N\{y(x_n,\boldsymbol{w})-t_n\}^2-\frac{\alpha}{2}\boldsymbol{w}^T\boldsymbol{w} \end{aligned} lnp(t∣x,w,β)p(w∣α)=−2βn=1∑N{y(xn,w)−tn}2−2αwTw这就相当于最小化
β2∑n=1N{y(xn,w)−tn}2+α2wTw\frac{\beta}{2}\sum_{n=1}^N\{y(x_n,\boldsymbol{w})-t_n\}^2+\frac{\alpha}{2}\boldsymbol{w}^T\boldsymbol{w} 2βn=1∑N{y(xn,w)−tn}2+2αwTw
相关文章:
PRML笔记2-关于回归参数w的先验的理解
接上篇,现在考虑给w\boldsymbol{w}w加入先验,考虑最简单的假设,也就是w\boldsymbol{w}w服从均值为0,协方差矩阵为α−1I\alpha^{-1}\boldsymbol{I}α−1I的高斯分布。 p(w∣α)N(w∣0,α−1I)(α2π)(M1)/2exp{−α2wTw}\begin{…...
Selenium原理
我们使用Selenium实现自动化测试,主要需要3个东西1.测试脚本,可以是python,java编写的脚本程序(也可以叫做client端)2.浏览器驱动, 这个驱动是根据不同的浏览器开发的,不同的浏览器使用不同的webdriver驱动…...
Disconf、Apollo和Nacos分布式配置框架差异对比
差异对比表格: 功能点DisconfApolloNacos依赖高可用框架完全依赖于Zookeeper来实现监听拉取,向外提供了HTTP拉取数据接口依赖于Eureka实现内部服务发现注册,提供HTTP接口给Client SDK拉取监听数据内部自研实现框架高可用CAP理论偏重点Zookee…...
高新技术企业认定条件条件 高企认定要求
高新技术企业认定条件 一、成立年限:申报企业须注册成立365个日历天数,而非一个会计年度。 二、知识产权 (1)申报企业必须拥有在中国境内授权或审批审定的知识产权,且知识产权在有效保护期内。知识产权权属人应为申请企…...
华为OD机试 - 新学校选址(JavaScript) | 机试题+算法思路+考点+代码解析 【2023】
新学校选址 题目 为了解新学期学生暴涨的问题,小乐村要建立所新学校 考虑到学生上学安全问题,需要所有学生家到学校的距离最短. 假设学校和所有学生家都走在一条直线之上,请问学校建立在什么位置, 能使得到学校到各个学生家的距离和最短 输入 第一行: 整数 n 取值范围 [1,1…...

二进制部署K8S
目录 一、环境准备 1、常见的k8s部署方式 2、关闭防火墙 3、关闭selinux 4、关闭swap 5、根据规划设置主机名 6、在master添加hosts 7、将桥接的IPv4流量传递到iptables的链 8、时间同步 二、部署etcd集群 1、master节点部署 2、查看证书的信息 2.1 创建k8s工作目…...
高效获知Activity的生命周期
Activity生命周期监听 使用 Instrumentation 对 Activity 生命周期进行监听。 优点: 全局仅一次反射,性能影响极小所有Activity的生命周期都能够被监听到由于Java的单继承,为了拓展性,可以使用装饰器模式对Instrumentation进行功…...

分析现货黄金价格一般有什么方法
分析现货黄金价格一般有什么方法呢?我相信很多投资者都会说,是技术分析。很多人并不知道技术分析是什么,并且技术分析是如何去分析现货黄金价格的,那么本文就介绍一下技术分析的主要分类。可以说,小编的其他文章都是以…...

Spring中的拦截器
这里写目录标题基本概念HandlerInterceptor拦截器HandlerInterceptor讲解MethodInterceptor拦截器二者的区别基本概念 在web开发中,拦截器是经常用到的功能。它可以帮我们预先设置数据以及统计方法的执行效率等等。 Spring中拦截器主要分两种,一个是Han…...
【Linux操作系统】【综合实验四 Linux的编译环境及线程编程】
文章目录一、实验目的二、实验要求三、实验内容四、实验报告要求一、实验目的 要求熟悉Linux环境中的程序编译、调试与项目管理过程并能实现具体操作;熟练使用基础函数库中与线程库中的管理函数,实现用户线程编程过程,并深入了解Linux的线程…...
Switch 如何使用NSCB 转换XCI NSP NSZ教程
很多小白经常碰到Switch游戏文件格式和预期不符的情况,比如碰到nsz自己不会安装(安装NSZ格式文件教程);或者是碰到xci格式的,想转换为nsp;抑或想将nsz格式文件还原回nsp格式。本文对此提供了解决方案。 文中…...

JVM12 字节码指令集
1. 概述 2. 加载与存储指令 2.1. 局部变量压栈指令 iload 从局部变量中装载int类型值 lload 从局部变量中装载long类型值 fload 从局部变量中装载float类型值 dload 从局部变量中装载double类型值 aload 从局部变量中装载引用类型值(refernce) iload_0 从…...
centos之python安装与多版本python之间的共存
一、背景 随着python版本迭代加快,有写python模块再低版本无法运行,此时需要我们在进行安装一个python版本 例如:uvloop 在python3.7上运行;python 3.6官方不再维护与更新 有些模块或不支持较低版本、有些模块支持较高版本python…...
SpringBoot学习笔记(一)
Idea中隐藏指定文件或指定类型文件 setting->File Types->Ignored Files and Folders输入要隐藏的文件名,支持*号通配符回车确认添加 SpringBoot概述 parent 小结: 开发SpringBoot程序要继承spring-boot-starter-parentspring-boot-starter-pa…...

美国原装KEYSIGHT E4981A(安捷伦) E4981A电容计
KEYSIGHT E4981A(安捷伦) Keysight E4981A(安捷伦)电容计为生产线中的陶瓷电容器测试提供了高速、可靠的测量。E4981A 实现了电容从小到大的测量能力,测量准确。Agilent E4981A 电容计有助于提高测试吞吐量࿰…...

K8S的基础概念
目录 一、k8s概述 1、k8s简介 1.1 k8s的作用 1.2 k8s的由来 1.3 k8s的含义 1.4 k8s的官网 1.5 GitHub 2、为什么要用 K8S? 2.1 K8s的目标 2.2 K8s解决了裸跑Docker 的若干痛点: 2.3 K8s的主要功能 3、K8s的特性 二、Kubernetes 集群架构与组件 1、工作流程 2、…...

【数据结构】——环形队列
文章目录一.环形队列的定义及其特点二.使用数组来实现环形队列1.创建一个队列2.初始化队列3. 判断环形队列是否为空4.判断环形队列是否已满5. 向循环队列插入元素,插入成功返回真6.删除环形链表的数据7. 取队头元素8.取队尾元素8.释放空间总结一.环形队列的定义及其…...

windows 安装Qt
下载 下载地址https://download.qt.io/,此文已5.7.0为例子。 根据图片依次选择即可。 安装 安装过程参考另一篇文章Ubuntu 安装 Qt5.7.0即可 配置环境变量 ps:我就是之前没配置环境变量,直接使用创建项目,项目源码直接运行是…...

spring cloud gateway集成sentinel并扩展支持restful api进行url粒度的流量治理
sentinel集成网关支持restful接口进行url粒度的流量治理前言使用网关进行总体流量治理(sentinel版本:1.8.6)1、cloud gateway添加依赖:2、sentinel配置3、网关类型项目配置4、通过zk事件监听刷新上报api分组信息1、非网关项目上报api分组信息…...

wafw00f工具
wafw00f Web应用程序防火墙指纹识别工具 github地址:https://github.com/EnableSecurity/wafw00f 安装环境:python3环境 —>使用 pip install wafw00f 进行安装 安装成功后目录:python安装目录中的Lib\site-packages\wafw00f 本机为&a…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...