PRML笔记2-关于回归参数w的先验的理解
接上篇,现在考虑给w\boldsymbol{w}w加入先验,考虑最简单的假设,也就是w\boldsymbol{w}w服从均值为0,协方差矩阵为α−1I\alpha^{-1}\boldsymbol{I}α−1I的高斯分布。
p(w∣α)=N(w∣0,α−1I)=(α2π)(M+1)/2exp{−α2wTw}\begin{aligned} p(\boldsymbol{w}|\alpha)&=\mathcal{N}(\boldsymbol{w}|0,\alpha^{-1}\boldsymbol{I})\\ &=(\frac{\alpha}{2\pi})^{(M+1)/2}\exp\{-\frac{\alpha}{2}\boldsymbol{w}^T\boldsymbol{w}\} \end{aligned} p(w∣α)=N(w∣0,α−1I)=(2πα)(M+1)/2exp{−2αwTw}我们一步一步看一下给定(x,t,α,β)(\boldsymbol{x},\boldsymbol{t},\alpha,\beta)(x,t,α,β)后,参数w\boldsymbol{w}w的概率
p(w∣t)=p(t∣w)p(w)p(t)p(w∣t,x,α,β)=p(t∣w,x,α,β)p(w∣x,α,β)p(t∣x,α,β)\begin{aligned} p(\boldsymbol{w}|\boldsymbol{t})&=\frac{p(\boldsymbol{t}|\boldsymbol{w})p(\boldsymbol{w})}{p(\boldsymbol{t})}\\ p(\boldsymbol{w}|\boldsymbol{t},\boldsymbol{x},\alpha,\beta)&=\frac{p(\boldsymbol{t}|\boldsymbol{w},\boldsymbol{x},\alpha,\beta)p(\boldsymbol{w}|\boldsymbol{x},\alpha,\beta)}{p(\boldsymbol{t}|\boldsymbol{x},\alpha,\beta)} \end{aligned} p(w∣t)p(w∣t,x,α,β)=p(t)p(t∣w)p(w)=p(t∣x,α,β)p(t∣w,x,α,β)p(w∣x,α,β)
由于α\alphaα和ttt独立,因此上式似然函数p(t∣w,x,α,β)=p(t∣w,x,β)p(\boldsymbol{t}|\boldsymbol{w},\boldsymbol{x},\alpha,\beta)=p(\boldsymbol{t}|\boldsymbol{w},\boldsymbol{x},\beta)p(t∣w,x,α,β)=p(t∣w,x,β),而w\boldsymbol{w}w的先验我们已经有了假设,因此得到书上的结果(此处个人理解):
p(w∣x,t,α,β)∝p(t∣x,w,β)p(w∣α)p(\boldsymbol{w}|\boldsymbol{x},\boldsymbol{t},\alpha,\beta)\propto p(\boldsymbol{t}|\boldsymbol{x},\boldsymbol{w},\beta)p(\boldsymbol{w}|\alpha) p(w∣x,t,α,β)∝p(t∣x,w,β)p(w∣α)
现在成了,我们最大化后验概率求w\boldsymbol{w}w,变成了最大化似然函数p(t∣x,w,β)p(\boldsymbol{t}|\boldsymbol{x},\boldsymbol{w},\beta)p(t∣x,w,β)和先验概率p(w∣α)p(\boldsymbol{w}|\alpha)p(w∣α)乘积的值。由于p(t∣x,w,β)=∏n=1NN(tn∣y(xn,w),β−1)=∏n=1N1(2π)12β−12exp(tn−y(xn,w))2−2β−1p(\boldsymbol{t}|\boldsymbol{x},\boldsymbol{w},\beta)=\prod_{n=1}^N\mathcal{N}(t_n|y(x_n,\boldsymbol{w}),\beta^{-1})=\prod_{n=1}^N\frac{1}{(2\pi)^{\frac{1}{2}}\beta^{-\frac{1}{2}}}exp{\frac{(t_n-y(x_n,\boldsymbol{w}))^2}{-2\beta^{-1}}}p(t∣x,w,β)=n=1∏NN(tn∣y(xn,w),β−1)=n=1∏N(2π)21β−211exp−2β−1(tn−y(xn,w))2
p(w∣α)=N(w∣0,α−1I)=(α2π)(M+1)/2exp{−α2wTw}\begin{aligned} p(\boldsymbol{w}|\alpha)&=\mathcal{N}(\boldsymbol{w}|0,\alpha^{-1}\boldsymbol{I})\\ &=(\frac{\alpha}{2\pi})^{(M+1)/2}\exp\{-\frac{\alpha}{2}\boldsymbol{w}^T\boldsymbol{w}\} \end{aligned} p(w∣α)=N(w∣0,α−1I)=(2πα)(M+1)/2exp{−2αwTw}
因此
p(t∣x,w,β)p(w∣α)=[∏n=1N1(2π)12β−12exp(tn−y(xn,w))2−2β−1](α2π)(M+1)/2exp{−α2wTw}\begin{aligned} p(\boldsymbol{t}|\boldsymbol{x},\boldsymbol{w},\beta)p(\boldsymbol{w}|\alpha)& =\left[\prod_{n=1}^N\frac{1}{(2\pi)^{\frac{1}{2}}\beta^{-\frac{1}{2}}}exp{\frac{(t_n-y(x_n,\boldsymbol{w}))^2}{-2\beta^{-1}}}\right] \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2}\exp\{-\frac{\alpha}{2}\boldsymbol{w}^T\boldsymbol{w}\} \end{aligned} p(t∣x,w,β)p(w∣α)=[n=1∏N(2π)21β−211exp−2β−1(tn−y(xn,w))2](2πα)(M+1)/2exp{−2αwTw}两边取ln可得
lnp(t∣x,w,β)p(w∣α)=−β2∑n=1N{y(xn,w)−tn}2+N2lnβ−N2ln(2π)+M+12lnα−M+12ln2π−α2wTw\begin{aligned} \ln{p}(\boldsymbol{t}|\boldsymbol{x},\boldsymbol{w},\beta)p(\boldsymbol{w}|\alpha) &=-\frac{\beta}{2}\sum_{n=1}^N\{y(x_n,\boldsymbol{w})-t_n\}^2+\frac{N}{2}\ln{\beta}-\frac{N}{2}\ln{(2\pi)} +\frac{M+1}{2}\ln{\alpha}-\frac{M+1}{2}\ln{2\pi}-\frac{\alpha}{2}\boldsymbol{w}^T\boldsymbol{w} \end{aligned} lnp(t∣x,w,β)p(w∣α)=−2βn=1∑N{y(xn,w)−tn}2+2Nlnβ−2Nln(2π)+2M+1lnα−2M+1ln2π−2αwTw我们现在要找的是最可能的w\boldsymbol{w}w的值,因此只考虑与w\boldsymbol{w}w有关的部门,去掉常数可得:
lnp(t∣x,w,β)p(w∣α)=−β2∑n=1N{y(xn,w)−tn}2−α2wTw\begin{aligned} \ln{p}(\boldsymbol{t}|\boldsymbol{x},\boldsymbol{w},\beta)p(\boldsymbol{w}|\alpha)&=-\frac{\beta}{2}\sum_{n=1}^N\{y(x_n,\boldsymbol{w})-t_n\}^2-\frac{\alpha}{2}\boldsymbol{w}^T\boldsymbol{w} \end{aligned} lnp(t∣x,w,β)p(w∣α)=−2βn=1∑N{y(xn,w)−tn}2−2αwTw这就相当于最小化
β2∑n=1N{y(xn,w)−tn}2+α2wTw\frac{\beta}{2}\sum_{n=1}^N\{y(x_n,\boldsymbol{w})-t_n\}^2+\frac{\alpha}{2}\boldsymbol{w}^T\boldsymbol{w} 2βn=1∑N{y(xn,w)−tn}2+2αwTw
相关文章:
PRML笔记2-关于回归参数w的先验的理解
接上篇,现在考虑给w\boldsymbol{w}w加入先验,考虑最简单的假设,也就是w\boldsymbol{w}w服从均值为0,协方差矩阵为α−1I\alpha^{-1}\boldsymbol{I}α−1I的高斯分布。 p(w∣α)N(w∣0,α−1I)(α2π)(M1)/2exp{−α2wTw}\begin{…...
Selenium原理
我们使用Selenium实现自动化测试,主要需要3个东西1.测试脚本,可以是python,java编写的脚本程序(也可以叫做client端)2.浏览器驱动, 这个驱动是根据不同的浏览器开发的,不同的浏览器使用不同的webdriver驱动…...
Disconf、Apollo和Nacos分布式配置框架差异对比
差异对比表格: 功能点DisconfApolloNacos依赖高可用框架完全依赖于Zookeeper来实现监听拉取,向外提供了HTTP拉取数据接口依赖于Eureka实现内部服务发现注册,提供HTTP接口给Client SDK拉取监听数据内部自研实现框架高可用CAP理论偏重点Zookee…...
高新技术企业认定条件条件 高企认定要求
高新技术企业认定条件 一、成立年限:申报企业须注册成立365个日历天数,而非一个会计年度。 二、知识产权 (1)申报企业必须拥有在中国境内授权或审批审定的知识产权,且知识产权在有效保护期内。知识产权权属人应为申请企…...
华为OD机试 - 新学校选址(JavaScript) | 机试题+算法思路+考点+代码解析 【2023】
新学校选址 题目 为了解新学期学生暴涨的问题,小乐村要建立所新学校 考虑到学生上学安全问题,需要所有学生家到学校的距离最短. 假设学校和所有学生家都走在一条直线之上,请问学校建立在什么位置, 能使得到学校到各个学生家的距离和最短 输入 第一行: 整数 n 取值范围 [1,1…...
二进制部署K8S
目录 一、环境准备 1、常见的k8s部署方式 2、关闭防火墙 3、关闭selinux 4、关闭swap 5、根据规划设置主机名 6、在master添加hosts 7、将桥接的IPv4流量传递到iptables的链 8、时间同步 二、部署etcd集群 1、master节点部署 2、查看证书的信息 2.1 创建k8s工作目…...
高效获知Activity的生命周期
Activity生命周期监听 使用 Instrumentation 对 Activity 生命周期进行监听。 优点: 全局仅一次反射,性能影响极小所有Activity的生命周期都能够被监听到由于Java的单继承,为了拓展性,可以使用装饰器模式对Instrumentation进行功…...
分析现货黄金价格一般有什么方法
分析现货黄金价格一般有什么方法呢?我相信很多投资者都会说,是技术分析。很多人并不知道技术分析是什么,并且技术分析是如何去分析现货黄金价格的,那么本文就介绍一下技术分析的主要分类。可以说,小编的其他文章都是以…...
Spring中的拦截器
这里写目录标题基本概念HandlerInterceptor拦截器HandlerInterceptor讲解MethodInterceptor拦截器二者的区别基本概念 在web开发中,拦截器是经常用到的功能。它可以帮我们预先设置数据以及统计方法的执行效率等等。 Spring中拦截器主要分两种,一个是Han…...
【Linux操作系统】【综合实验四 Linux的编译环境及线程编程】
文章目录一、实验目的二、实验要求三、实验内容四、实验报告要求一、实验目的 要求熟悉Linux环境中的程序编译、调试与项目管理过程并能实现具体操作;熟练使用基础函数库中与线程库中的管理函数,实现用户线程编程过程,并深入了解Linux的线程…...
Switch 如何使用NSCB 转换XCI NSP NSZ教程
很多小白经常碰到Switch游戏文件格式和预期不符的情况,比如碰到nsz自己不会安装(安装NSZ格式文件教程);或者是碰到xci格式的,想转换为nsp;抑或想将nsz格式文件还原回nsp格式。本文对此提供了解决方案。 文中…...
JVM12 字节码指令集
1. 概述 2. 加载与存储指令 2.1. 局部变量压栈指令 iload 从局部变量中装载int类型值 lload 从局部变量中装载long类型值 fload 从局部变量中装载float类型值 dload 从局部变量中装载double类型值 aload 从局部变量中装载引用类型值(refernce) iload_0 从…...
centos之python安装与多版本python之间的共存
一、背景 随着python版本迭代加快,有写python模块再低版本无法运行,此时需要我们在进行安装一个python版本 例如:uvloop 在python3.7上运行;python 3.6官方不再维护与更新 有些模块或不支持较低版本、有些模块支持较高版本python…...
SpringBoot学习笔记(一)
Idea中隐藏指定文件或指定类型文件 setting->File Types->Ignored Files and Folders输入要隐藏的文件名,支持*号通配符回车确认添加 SpringBoot概述 parent 小结: 开发SpringBoot程序要继承spring-boot-starter-parentspring-boot-starter-pa…...
美国原装KEYSIGHT E4981A(安捷伦) E4981A电容计
KEYSIGHT E4981A(安捷伦) Keysight E4981A(安捷伦)电容计为生产线中的陶瓷电容器测试提供了高速、可靠的测量。E4981A 实现了电容从小到大的测量能力,测量准确。Agilent E4981A 电容计有助于提高测试吞吐量࿰…...
K8S的基础概念
目录 一、k8s概述 1、k8s简介 1.1 k8s的作用 1.2 k8s的由来 1.3 k8s的含义 1.4 k8s的官网 1.5 GitHub 2、为什么要用 K8S? 2.1 K8s的目标 2.2 K8s解决了裸跑Docker 的若干痛点: 2.3 K8s的主要功能 3、K8s的特性 二、Kubernetes 集群架构与组件 1、工作流程 2、…...
【数据结构】——环形队列
文章目录一.环形队列的定义及其特点二.使用数组来实现环形队列1.创建一个队列2.初始化队列3. 判断环形队列是否为空4.判断环形队列是否已满5. 向循环队列插入元素,插入成功返回真6.删除环形链表的数据7. 取队头元素8.取队尾元素8.释放空间总结一.环形队列的定义及其…...
windows 安装Qt
下载 下载地址https://download.qt.io/,此文已5.7.0为例子。 根据图片依次选择即可。 安装 安装过程参考另一篇文章Ubuntu 安装 Qt5.7.0即可 配置环境变量 ps:我就是之前没配置环境变量,直接使用创建项目,项目源码直接运行是…...
spring cloud gateway集成sentinel并扩展支持restful api进行url粒度的流量治理
sentinel集成网关支持restful接口进行url粒度的流量治理前言使用网关进行总体流量治理(sentinel版本:1.8.6)1、cloud gateway添加依赖:2、sentinel配置3、网关类型项目配置4、通过zk事件监听刷新上报api分组信息1、非网关项目上报api分组信息…...
wafw00f工具
wafw00f Web应用程序防火墙指纹识别工具 github地址:https://github.com/EnableSecurity/wafw00f 安装环境:python3环境 —>使用 pip install wafw00f 进行安装 安装成功后目录:python安装目录中的Lib\site-packages\wafw00f 本机为&a…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
鸿蒙(HarmonyOS5)实现跳一跳小游戏
下面我将介绍如何使用鸿蒙的ArkUI框架,实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...
【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅!
【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅! 🌱 前言:一棵树的浪漫,从数组开始说起 程序员的世界里,数组是最常见的基本结构之一,几乎每种语言、每种算法都少不了它。可你有没有想过,一组看似“线性排列”的有序数组,竟然可以**“长”成一棵平衡的二…...
如何把工业通信协议转换成http websocket
1.现状 工业通信协议多数工作在边缘设备上,比如:PLC、IOT盒子等。上层业务系统需要根据不同的工业协议做对应开发,当设备上用的是modbus从站时,采集设备数据需要开发modbus主站;当设备上用的是西门子PN协议时…...
break 语句和 continue 语句
break语句和continue语句都具有跳转作用,可以让代码不按既有的顺序执行 break break语句用于跳出代码块或循环 1 2 3 4 5 6 for (var i 0; i < 5; i) { if (i 3){ break; } console.log(i); } continue continue语句用于立即终…...
NineData数据库DevOps功能全面支持百度智能云向量数据库 VectorDB,助力企业 AI 应用高效落地
NineData 的数据库 DevOps 解决方案已完成对百度智能云向量数据库 VectorDB 的全链路适配,成为国内首批提供 VectorDB 原生操作能力的服务商。此次合作聚焦 AI 开发核心场景,通过标准化 SQL 工作台与细粒度权限管控两大能力,助力企业安全高效…...
多模态学习路线(2)——DL基础系列
目录 前言 一、归一化 1. Layer Normalization (LN) 2. Batch Normalization (BN) 3. Instance Normalization (IN) 4. Group Normalization (GN) 5. Root Mean Square Normalization(RMSNorm) 二、激活函数 1. Sigmoid激活函数(二分类&…...
