分类算法的评价指标
分类算法的评价指标
查准率、查全率、准确率、F1分数:
查准率(Precision): 模型预测为正例的样本中实际未正的比例。它关注的点在:预测为正例样本的准确性。
查全率(recall): 模型正确预测为正例的样本数占所有实际样本的比例。它关注的点是:模型能够正确捕捉到多少正例样本。
准确率(Accuracy): 模型所有正确预测的样本数占总样本数的比例,即模型整体的预测准确性。
F1分数: 是一个综合评价指标,结合了查准率(Precision)和查全率(Recall),用于平衡模型在不同情况下的性能。它是精确率和召回率的调和平均值,可以帮助评估模型在不同阈值下的整体表现。
作用:
- 平衡查准率和查全率,查准率和查全率之间存在一种平衡关系,提高查准率可能会降低查全率,反之也是,当然,模型足够优秀的话他们俩可以同时提高,但是做不到二者一直持续提高,毕竟数据集中正例样本有限;
- 处理**不平衡数据集,**数据集的正负样本分布可能不均衡,这个时候仅仅依靠准确率可能不足以反应模型性能。F1分数适合这种情况下模型评估,因为它考虑了正负样本的不平衡。
不平衡数据集: 是指不同类别的样本数量存在了明显差异,比如正例900个,负例100个,这样的情况如果模型不是很差,那么美查准率可能高,但是因为正例总数较小,所以查全率会很小,反过来说也是一样,所以这个时候需要F1分数来调和。 - 评估模型稳定性,D1分数对模型的稳定性有影响,如果模型在不同阈值下的预测结果变化比较大,可能会影响F1分数,所以根据F1分数可以帮助评估模型在不同条件下的鲁棒性。
总结: 平衡查准率和查全率
- 查准率重点在于避免误报,即尽量确保模型预测为正例的样本是真的正例;
- 查全率重点在于避免漏报,即尽量捕捉到所有的正例样本;
- 准确率是整体预测的准确性,综合考虑了正例和负例的预测情况。
代码实现
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_curve, roc_auc_scoreaccuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')
详细的功能实现可参考sklearn官网介绍,链接:https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
相关文章:
分类算法的评价指标
分类算法的评价指标 查准率、查全率、准确率、F1分数: 查准率(Precision): 模型预测为正例的样本中实际未正的比例。它关注的点在:预测为正例样本的准确性。 查全率(recall): 模型…...

智能工厂移动式作业轻薄加固三防平板数据采集终端
在这个高度自动化和数字化的环境中,数据采集变得尤为重要。为了满足这个需求,工业三防平板数据采集终端应运而生。工业三防平板数据采集终端采用了轻量级高强度镁合金材质,这使得它在保持轻薄的同时具有更强的坚固性。这种材质还具有耐磨防损…...
Python Flask token身份认证
首先安装依赖: pip install flask-jwt-extended 然后在主应用中(项目入口文件)加入以下代码: from flask import Flask from flask_jwt_extended import JWTManager #引入依赖 app Flask(__name__) app.config[JWT_SECRET_KEY…...

docker安装rabbitMQ
目录 1、拉取镜像 2、构造镜像 3、开启插件 4、开启安全组 5、访问 ui界面访问不到解决步骤 1、拉取镜像 docker pull rabbitmq 这里拉取的是最新镜像,若要指定版本可在后加上版本号即可;比如 docker pull rabbitmq:3.7.14 2、构造镜像 方式一:交…...

PDF如何转ppt?PDF转ppt的方法
PDF是一种广泛应用于文档传输和存储的格式,然而,在某些情况下,我们可能需要将PDF文件转换为PPT,以便更加灵活地编辑和展示内容。那么,PDF如何转ppt呢?在本文中,我们将介绍几种常用的方法和工具,…...

设计模式(8)外观模式
一、 1、使用背景:降低访问复杂系统的内部子系统时的复杂度,简化客户端之间的接口。 2、定义: 为子系统中的一组接口定义一个一致的界面,此模式定义了一个高层接口,这个接口使得这一子系统更加容易使用。完美地体现…...

Django(7)-项目实战-发布会管理
登录功能 模板页面 sign/templates/index.html <!DOCTYPE html> <html> <head><title>Login Page</title> </head> <body><h1>发布会管理</h1><form action"/login/" method"post"><la…...

Hbase-技术文档-java.net.UnknownHostException: 不知道这样的主机。 (e64682f1b276)
问题描述: 在使用spring-boot操作habse的时候,在对habse进行操作的时候出现这个问题。。 报错信息如下: 第一段报错: 第二段报错: java.net.UnknownHostException: e64682f1b276 问题定位解读: 错误 ja…...

OpenCV + CLion在windows环境下使用CMake编译, 出现Mutex相关的错误的解决办法
最近在windows下面用cmake编译OpenCV的项目代码,但是一直碰到找不到mutex的问题,百思不得其解, Executing task: g -g -o bin/debug.exe src/main.cppC:\MinGW\lib\opencv\build\include/opencv2/core/utility.hpp:697:14: error: recursive_mutex in namespace st…...

华为质量管理:从产品质量到用户体验,Kano模型成为新方向
目录 前言 华为质量管理的四个阶段 基于 IPD 如何做质量管理呢? CSDN相关课程 作者简介 前言 今天继续来谈谈华为流程体系中的质量管理过程。 通常来说质量具体是指产品的质量,也就是产品的使用价值及其属性。 产品再细分的话可以分为三个层次&a…...

正则表达式学习笔记
正则表达式学习笔记 常用正则表达式 1、匹配字母 Pattern patternPattern.compile("[a-zA-Z]"); 2、匹配数字 Pattern patternPattern.compile("[0-9]"); 3、匹配字母和数字 Pattern patternPattern.compile("([0-9])|([a-zA-Z])")…...

构建数据可视化(基于Echarts,python)
构建数据可视化(基于Echarts,python) 本文目录: 一、写在前面的题外话 二、数据可视化概念 三、用Python matplotlib库绘制数据可视化图 四、基于Echarts构建大数据可视化 4.1、安装echarts.js 4.2、数据可视化折线图制作 4.2.1、基础折线图 4.2…...

【2023最新版】R安装(直接+Anaconda)及使用(Pycharm配置R)教程
目录 一、R语言 1. R官网 2. R介绍 二、直接安装R 1. 下载 2. 安装 三、Pycharm使用R 1. 安装Pycharm 2. R Language for IntelliJ插件 3. R设置 报错 4. R软件包 安装 加载 查看已安装的包 四、使用Anaconda创建R语言虚拟环境 1. 安装Anaconda 2. 创建R语言…...

opencv 案例实战02-停车场车牌识别SVM模型训练及验证
1. 整个识别的流程图: 2. 车牌定位中分割流程图: 三、车牌识别中字符分割流程图: 1.准备数据集 下载车牌相关字符样本用于训练和测试,本文使用14个汉字样本和34个数字跟字母样本,每个字符样本数为40,样本尺…...
Vue实例挂载的过程
一、思考 我们都听过知其然知其所以然这句话 那么不知道大家是否思考过new Vue()这个过程中究竟做了些什么? 过程中是如何完成数据的绑定,又是如何将数据渲染到视图的等等 二、分析 首先找到vue的构造函数 源码位置:src\core\instance\…...

dvwa xss通关
反射型XSS通关 low难度 选择难度: 直接用下面JS代码尝试: <script>alert(/xss/)</script>通关成功: medium难度 直接下面代码尝试后失败 <script>alert(/xss/)</script>发现这段代码直接被输出: 尝试…...

AD如何进行汉化
AD如何进行汉化 通过安装好AD后,默认都是英文界面模式,如果想汉化为中文模式,需要点击“DXP”->“参数选择”,打开界面如下: 然后将上图“本地化”下面的方框勾选上,点击“应用”,“确定”…...

【JUC基础】JUC入门基础
目录 什么是JUC线程和进程锁传统的 synchronizedLock 锁Synchronized 与 Lock 的区别 生产者和消费者问题Synchronized 版Lock版Condition 的优势:精准通知和唤醒线程 8 锁现象问题1:两个同步方法,先执行发短信还是打电话?问题2&a…...

自然语言处理: 第十章GPT的API使用
理论基础 现在的以GPT为首的生成类模型,它拥有对话的能力,它会根据你输入的暗示(prompt)或者指令(instruct)生成对应的回答。所以,不同的输入会导致不同的输出(其实由于chatgpt最终生成的答案是beam_search 以及随机采样的机制,所…...

docker使用harbor进行镜像仓库管理演示以及部分报错解决
目录 一.安装harbor和docker-compose 1.下载 2.将该文件修改为这样,修改好自己的hostname和port,后文的用户和密码可以不改也可以改,用于登录 3.安装 二.修改daemon.json文件和/etc/hosts文件 三.使用powershell作windows端域名映射 四…...

Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...
用鸿蒙HarmonyOS5实现中国象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
API网关Kong的鉴权与限流:高并发场景下的核心实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...

《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...