当前位置: 首页 > news >正文

分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测

分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测

目录

    • 分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测,优化参数为:学习率,批量处理大小,正则化参数。图很多,包括分类效果图,迭代优化图,混淆矩阵图。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复 MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测获取。
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值%%  迭代寻优
for i = 1 : maxgenfor j = 1 : sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 自适应变异pos = unidrnd(numsum);if rand > 0.95pop(j, pos) = rands(1, 1);end% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);end% 群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j, :);fitnesszbest = fitness(j);endendBestFit = [BestFit, fitnesszbest];    
end
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130462492

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501

相关文章:

分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测

分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测 目录 分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测…...

STM32启动模式详解

文章目录 前置知识1. 单片机最小系统组成2. BOOT电路3. 三种启动模式4. 存储器映射 从主FLASH启动从系统存储区启动从SRAM启动 前置知识 1. 单片机最小系统组成 一个单片机最小系统由电源、晶振、下载电路、BOOT电路、和复位电路组成。少一个单片机都启动不了。 2. BOOT电路 …...

go语言中的切片

切片底层 切片&#xff08;Slice&#xff09;是一个拥有相同类型元素的可变长度的序列。它是基于数组类型做的一层封装。它非常灵活&#xff0c;支持自动扩容。 切片是一个引用类型&#xff0c;它的内部结构包含地址、长度和容量。切片一般用于快速地操作一块数据集合。 切片…...

HTML-常见标签、HTML5新特性

HTML 软件架构 1.C/S架构 (1) C/S架构即Client/Server&#xff08;客户机/服务器&#xff09;结构。 (2) C/S 架构特点 ​ C/S结构在技术上很成熟&#xff0c;它的主要特点是交互性强、具有安全的存取模式、网络通信量低、响应速度快、利于处理大量数据。但是该结构的程序是…...

微信有自己的“知乎”,微信问一问来了!

这几个月来&#xff0c;微信问一问一直挺火的&#xff0c;有人涨粉&#xff0c;有人变现&#xff0c;有人引流~ 这个全新的流量入口对流量玩家来说又是一波巨大的流量红利。 微信问一问就类似于微信版的知乎&#xff0c;未来将对知乎产生一定竞争压力。 依托于微信这个庞大的流…...

[MyBatis系列③]动态SQL

目录 1、简介 2、if标签 3、foreach标签 4、SQL抽取 ⭐MyBatis系列①&#xff1a;增删改查 ⭐MyBatis系列②&#xff1a;两种Dao开发方式 1、简介 开发中在MyBatis映射文件配置SQL语句&#xff0c;但是前面配置的都是比较简单的&#xff0c;不涉及稍复杂的业务场景。想要应…...

开始MySQL之路—— DDL语法、DML语法、DQL语法基本操作详解

DDL语法 DDL&#xff08;Data Definition Language&#xff09; 数据定义语言&#xff0c;该语言部分包括以下内容。 对数据库的常用操作 对表结构的常用操作 修改表结构 对数据库的常用操作 1: 查看当前所有的数据库 show databases; 2&#xff1a;创建数据库 create dat…...

Java“牵手”天猫整店商品API接口数据,通过店铺ID获取整店商品详情数据,天猫店铺所有商品API申请指南

天猫平台店铺所有商品数据接口是开放平台提供的一种API接口&#xff0c;通过调用API接口&#xff0c;开发者可以获取天猫整店的商品的标题、价格、库存、月销量、总销量、库存、详情描述、图片、价格信息等详细信息 。 获取店铺所有商品接口API是一种用于获取电商平台上商品详…...

用AI重构的钉钉,“钱”路在何方?

点击关注 文&#xff5c;郝 鑫&#xff0c;编&#xff5c;刘雨琦 钉钉2023年生态大会&#xff0c;离开了两年的无招&#xff0c;遇到了单飞9天的钉钉。 “做小钉钉、做好钉钉、做酷钉钉”&#xff0c;无招重申了钉钉的方向。 无招提到的三点&#xff0c;再加上“高质量增长”…...

批量根据excel数据绘制柱状图

要批量根据Excel数据绘制柱状图&#xff0c;可以使用Python中的pandas和matplotlib库来实现。下面是示例代码&#xff1a; import pandas as pd import matplotlib.pyplot as plt import os def draw_bar_chart_from_excel(file_path, x_column, y_column, output_folder): …...

浅谈 Java 中的 Lambda 表达式

更好的阅读体验 \huge{\color{red}{更好的阅读体验}} 更好的阅读体验 Lambda 表达式是一种匿名函数&#xff0c;它可以作为参数传递给方法或存储在变量中。在 Java8 中&#xff0c;它和函数式接口一起&#xff0c;共同构建了函数式编程的框架。 什么是函数式编程 函数式编程是…...

闭包的概念

概念 内层函数可以访问到外层函数的变量和参数&#xff0c;即一个函数和它周围状态捆绑在一起的组合。 举例 函数作为返回值 // 函数作为返回值 function test(){const a 1;return function() {console.log(a:,a);} }const fn test(); const a 6; fn(); // 1 2. 函数作…...

openGauss学习笔记-52 openGauss 高级特性-LLVM

文章目录 openGauss学习笔记-52 openGauss 高级特性-LLVM52.1 适用场景52.2 非适用场景52.3 其他因素对LLVM性能的影响52.4 LLVM使用建议 openGauss学习笔记-52 openGauss 高级特性-LLVM openGauss借助LLVM&#xff08;Low Level Virtual Machine&#xff09;提供的库函数&…...

MySQL 8.0字符集校正

MySQL升级为8.0版本时&#xff0c;之前版本的字符集往往是不同的&#xff0c;需要校正。 执行下面的三个SQL语句的查询结果&#xff0c;可以从库、表、列三个层面对字符集进行校正。 库 select concat(alter database , schema_name, default character set utf8mb4 collate …...

软考:中级软件设计师:数据库恢复与备份,故障与恢复,反规范化

软考&#xff1a;中级软件设计师:数据库恢复与备份 提示&#xff1a;系列被面试官问的问题&#xff0c;我自己当时不会&#xff0c;所以下来自己复盘一下&#xff0c;认真学习和总结&#xff0c;以应对未来更多的可能性 关于互联网大厂的笔试面试&#xff0c;都是需要细心准备…...

Unbutu系统-Docker安装、JDK环境配置,Docker常用指令、Docker安装MySQL、Redis、Tomcat、Nginx,前端后分离项目部署

目录 1、防火墙 1.1、查看防火墙状态 1.2、开启防火墙 1.3、关闭防火墙 1.4、重启防火墙 1.5、查看防火墙版本 2、安装JDK 2.1、官网下载tar包 2.3、解压tar.gz文件 2.4、配置环境变量 2.4.1、查看安装路径 2.4.2、设置环境变量 2.4.3、执行该让环境变量生效 2.4…...

Python绘图系统10:在父组件中使用子组件的函数

文章目录 Combobox绑定事件互相调用源代码 Python绘图系统&#xff1a; &#x1f4c8;从0开始实现一个三维绘图系统自定义控件&#xff1a;坐标设置控件&#x1f4c9;坐标列表控件&#x1f4c9;支持多组数据的绘图系统图表类型和风格&#xff1a;散点图和条形图&#x1f4ca;混…...

【Linux的成长史】Linux的发展史

&#x1f3ac; 博客主页&#xff1a;博主链接 &#x1f3a5; 本文由 M malloc 原创&#xff0c;首发于 CSDN&#x1f649; &#x1f384; 学习专栏推荐&#xff1a;LeetCode刷题集 数据库专栏 初阶数据结构 &#x1f3c5; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如…...

OLED透明屏是什么?什么叫做OLED透明屏的原屏?

OLED透明屏是一种新型的显示技术&#xff0c;具有高对比度、高亮度和能耗低等优势&#xff0c;正被越来越广泛地应用于各个领域中。 在OLED透明屏中&#xff0c;原屏是至关重要的元件之一。本文将深入探讨OLED透明屏原屏的意义、制造过程、品质要求、应用案例和发展趋势&#…...

Redis 持久化的手段有哪些 ?RDB 和 AOF 有什么区别 ?

目录 1. Redis 持久化的手段有哪些 2. RDB 和 AOF 有什么区别 2.1 RDB 持久化 2.2 AOF 持久化 2.2.1 AOF 持久化策略有哪些 3. 混合持久化是如何执行的&#xff08;了解&#xff09; 1. Redis 持久化的手段有哪些 Redis 持久化的手段有三种&#xff1a; 快照方式&#…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...