如何基于自己训练的Yolov5权重,结合DeepSort实现目标跟踪
网上有很多相关不错的操作demo,但自己在训练过程仍然遇到不少疑惑。因此,我这总结一下操作过程中所解决的问题。
1、deepsort的训练集是否必须基于逐帧视频?
我经过尝试,发现非连续性的图像仍可以作为训练集。一个实例(如指定某个人、某辆车等)对应一个train\test文件夹即可。当然,逐帧效果更佳。

2、yolo训练的类型不止一个,该怎么办?
按照问题1中,每个类型都可以制作1个或多个实例(如类型0表示自行车,则可以有红色自行车、蓝色自行车等多个实例,类别1表示xxx,同理),全部都集中存放于train\test即可。

3、deepsort训练完成后,如何实现对自己视频中的目标进行跟踪?
将track.py相关参数进行修改即可,如下所示。注意,若yolo存在识别多个类别,则需要对应修改’–classes’中参数!!!
if __name__ == '__main__':parser = argparse.ArgumentParser()# 表示yolo训练得到的权重parser.add_argument('--yolo_weights', type=str, default='yolov5/weights/best.pt', help='model.pt path')# 表示训练得到的权重parser.add_argument('--deep_sort_weights', type=str, default='deep_sort_pytorch/deep_sort/deep/checkpoint/ckpt.t7', help='ckpt.t7 path')# 测试视频parser.add_argument('--source', type=str, default='data/test.mp4', help='source')parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folderparser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')# True表示显示、保存、存储结果parser.add_argument('--show-vid', action='store_true', default=True,help='display tracking video results')parser.add_argument('--save-vid', action='store_true',default=True, help='save video tracking results')parser.add_argument('--save-txt', action='store_true',default=True, help='save MOT compliant results to *.txt')# 表示跟踪所有类别,yolo训练类型共200种parser.add_argument('--classes', nargs='+', default=list(range(200)), type=int, help='filter by class')parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')parser.add_argument('--augment', action='store_true', help='augmented inference')parser.add_argument('--evaluate', action='store_true', help='augmented inference')parser.add_argument("--config_deepsort", type=str, default="deep_sort_pytorch/configs/deep_sort.yaml")args = parser.parse_args()args.img_size = check_img_size(args.img_size)with torch.no_grad():detect(args)
效果

相关文章:
如何基于自己训练的Yolov5权重,结合DeepSort实现目标跟踪
网上有很多相关不错的操作demo,但自己在训练过程仍然遇到不少疑惑。因此,我这总结一下操作过程中所解决的问题。 1、deepsort的训练集是否必须基于逐帧视频? 我经过尝试,发现非连续性的图像仍可以作为训练集。一个实例࿰…...
C#_委托详解
委托是什么? 字面理解:例如A要建一栋别墅,找到B建筑施工队,请B来建筑别墅。 委托类型规定方法的签名(方法类型):返回值类型、参数类型、个数、顺序。 委托变量可以用来存储方法的引用&#x…...
R包开发-2.2:在RStudio中使用Rcpp制作R-Package(更新于2023.8.23)
目录 4-添加C函数 5-编辑元数据 6-启用Roxygen,执行文档化。 7-单元测试 8-在自己的计算机上安装R包: 9-程序发布 参考: 为什么要写这篇文章的更新日期?因为R语言发展很快,很多函数或者方式,现在可以使…...
基于数据湖的多流拼接方案-HUDI实操篇
目录 一、前情提要 二、代码Demo (一)多写问题 (二)如果要两个流写一个表,这种情况怎么处理? (三)测试结果 三、后序 一、前情提要 基于数据湖对两条实时流进行拼接࿰…...
Spring MVC 四:Context层级
这一节我们来回答上篇文章中避而不谈的有关什么是RootApplicationContext的问题。 这就需要引入Spring MVC的有关Context Hierarchy的问题。Context Hierarchy意思就是Context层级,既然说到Context层级,说明在Spring MVC项目中,可能存在不止…...
【C++ 学习 ⑱】- 多态(上)
目录 一、多态的概念和虚函数 1.1 - 用基类指针指向派生类对象 1.2 - 虚函数和虚函数的重写 1.3 - 多态构成的条件 1.4 - 多态的应用场景 二、协变和如何析构派生类对象 2.1 - 协变 2.2 - 如何析构派生类对象 三、C11 的 override 和 final 关键字 一、多态的概念和虚…...
合宙Air724UG LuatOS-Air LVGL API控件--进度条 (Bar)
进度条 (Bar) Bar 是进度条,可以用来显示数值,加载进度。 示例代码 – 创建进度条 bar lvgl.bar_create(lvgl.scr_act(), nil) – 设置尺寸 lvgl.obj_set_size(bar, 200, 20); – 设置位置居中 lvgl.obj_align(bar, NULL, lvgl.ALIGN_CENTER, 0, 0) …...
图神经网络与分子表征:番外——基组选择
学过高斯软件的人都知道,我们在撰写输入文件 gjf 时需要准备输入【泛函】和【基组】这两个关键词。 【泛函】敲定计算方法,【基组】则类似格点积分中的密度,与计算精度密切相关。 部分研究人员借用高斯中的一系列基组去包装输入几何信息&am…...
rabbitmq笔记-rabbitmq客户端开发使用
连接RabbitMQ 1.创建ConnectionFactory,给定参数ip地址,端口号,用户名和密码等 2.创建ConnectionFactory,使用uri方式实现,创建channel。 注意: Connection可以用来创建多个channel实例,但c…...
13.Oracle中nvl()与nvl2()函数详解
Oracle中nvl()与nvl2()函数详解: 函数nvl(expression1,expression2)根据参数1是否为null返回参数1或参数2的值; 函数nvl2(expression1,expression2,expression3)根据参数1是否为null返回参数2或参数3的值 1.nvl:根据参数1是否为null返回参数…...
设置某行被选中并滚动到改行
<el-table :data"tableDamItem" ref"singleTable" stripe style"width: 100%" height"250" highlight-current-row v-on:row-click"handleTableRow"></el-table>/*** 设置表格行被选中,并滚动到该行* param po…...
React钩子函数之useRef的基本使用
React钩子函数中的useRef是一个非常有用的工具,它可以用来获取DOM元素或者保存一些变量。在这篇文章中,我们将会讨论useRef的基本使用。 首先,我们需要知道useRef是如何工作的。它返回一个可变的ref对象,这个对象可以在组件的整个…...
无风扇迷你电脑信息与购买指南
本文将解释什么是无风扇迷你电脑,以及计算产品组合中你可以购买的一些不同的无风扇迷你电脑的信息指南。 无风扇迷你电脑是一种小型工业计算机,旨在处理复杂的工业工作负载。迷你电脑是通过散热器被动冷却可在各种类型的易失性环境中部署。无风扇微型计…...
比特币是怎么回事?
比特币是怎么回事? 一句话描述就是,初始化几个比特币,申请成为矿工组织,发生交易时抢单记账成功可以比特币奖励,随着比特币数量的增加,奖励越来越少。怎么记账成功呢,通过交易信息幸运数字哈希…...
vue3+ts+uniapp小程序端自定义日期选择器基于内置组件picker-view + 扩展组件 Popup 实现自定义日期选择及其他选择
vue3ts 基于内置组件picker-view 扩展组件 Popup 实现自定义日期选择及其他选择 vue3tsuniapp小程序端自定义日期选择器 1.先上效果图2.代码展示2.1 组件2.2 公共方法处理日期2.3 使用组件 3.注意事项3.1refSelectDialog3.1 backgroundColor"#fff" 圆角问题 自我记…...
Java进阶篇--泛型
前言 Java 泛型(generics)是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允许程序员在编译时检测到非法的类型。它允许在定义类、接口和方法时使用类型参数。这种技术使得在编译期间可以使用任何类型,而…...
android framework之Applicataion启动流程分析
Application启动流程分析 启动方式一:通过Launcher启动app 启动方式二:在某一个app里启动第二个app的Activity. 以上两种方式均可触发app进程的启动。但无论哪种方式,最终通过通过调用AMS的startActivity()来启动application的。 根据上图…...
Linux Day10 ---Mybash
目录 一、Mybash介绍 1.1.mybash.c 打印函数 分割函数 命令函数 二、Mybash实现 2.1.打印函数 2.1.1需要使用到的功能函数 1.获取与当前用户关联的UID 2.获取与当前用户的相关信息---一个结构体(passwd) 3.获取主机信息 4.获取当前所处位置 5.给…...
Flask-Sockets和Flask-Login联合实现websocket的登录认证功能
flask_login 提供了一个方便的方式来管理用户会话。当你在 Flask 的 HTTP 视图中使用它时,你可以简单地使用 login_required 装饰器来确保用户已登录。 但是,flask_sockets 并没有直接与 flask_login 集成。如果你想在建立 WebSocket 连接时检查用户是否…...
东盟全面覆盖?长城战略部署核心区域市场,首个百万粉丝国产品牌
根据最新消息,长城汽车在东南亚地区取得了巨大的成功,成功进军了亚洲最大的汽车市场之一-印度尼西亚。这标志着长城汽车已经实现了东盟核心市场的全面覆盖,成为全球布局的重要一步。 在过去的几年里,长城汽车在东盟地区的市场布局…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
