【考研数学】线形代数第三章——向量 | 3)向量组秩的性质、向量空间、过渡矩阵
文章目录
- 引言
- 三、向量组等价、向量组的极大线性无关组与秩
- 3.2 向量组秩的性质
- 四、 n n n 维向量空间
- 4.1 基本概念
- 4.2 基本性质
- 写在最后
引言
紧接前文学习完向量组秩的基本概念后,继续往后学习向量的内容。
三、向量组等价、向量组的极大线性无关组与秩
3.2 向量组秩的性质
性质 1(三秩相等) —— 设 A = ( β 1 , β 2 , … , β n ) = ( α 1 , α 2 , … , α n ) T \pmb{A=(\beta_1,\beta_2,\dots,\beta_n)=(\alpha_1,\alpha_2,\dots,\alpha_n)^T} A=(β1,β2,…,βn)=(α1,α2,…,αn)T ,其中 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 与 β 1 , β 2 , … , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,…,βn 分别为矩阵 A A A 的行向量组和列向量组,则矩阵 A A A 的秩、 A A A 的行向量组的秩、 A A A 的列向量组的秩相等。
性质 2 —— 设 A : α 1 , α 2 , … , α n A:\pmb{\alpha_1,\alpha_2,\dots,\alpha_n} A:α1,α2,…,αn 与 B : β 1 , β 2 , … , β n B:\pmb{\beta_1,\beta_2,\dots,\beta_n} B:β1,β2,…,βn 为两个维数相同的向量组,若向量组 A A A 可由向量组 B B B 线性表示,则向量组 A A A 的秩不超过向量组 B B B 的秩。
性质 3 —— 等价的向量组秩相等,反之不对。
1,设向量组 A : α 1 , α 2 , … , α n A:\pmb{\alpha_1,\alpha_2,\dots,\alpha_n} A:α1,α2,…,αn 与 B : β 1 , β 2 , … , β n B:\pmb{\beta_1,\beta_2,\dots,\beta_n} B:β1,β2,…,βn 的秩相等,且向量组 A A A 可由向量组 B B B 线性表示,则向量组 A A A 与向量组 B B B 等价。
2,设向量组 A : α 1 , α 2 , … , α n A:\pmb{\alpha_1,\alpha_2,\dots,\alpha_n} A:α1,α2,…,αn 可由 B : β 1 , β 2 , … , β n B:\pmb{\beta_1,\beta_2,\dots,\beta_n} B:β1,β2,…,βn 线性表示,但向量组 A A A 不可由向量组 B B B 线性表示,则向量组 A A A 的秩小于向量组 B B B 。
3,两个等价的向量组,各自构成的矩阵也等价,但反之不一定。
四、 n n n 维向量空间
4.1 基本概念
n n n 维向量空间 —— 所有 n n n 维向量连同向量的加法及数与向量的乘法运算称为 n n n 维向量空间,记为 R n . \pmb{R}^n. Rn.
基 —— 设 R n \pmb{R}^n Rn 为 n n n 维向量空间,设 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 为向量空间中的 n n n 个向量,若满足:
(1) α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 线性无关;
(2)对任意的 β ∈ R n , β \pmb{\beta \in R^n,\beta} β∈Rn,β 都可由向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 线性表示,
称 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 为 n n n 维向量空间 R n R^n Rn 的基。
特别地,若 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 两两正交,且都是单位向量,称其为正交规范基。
向量在基下的坐标 —— 设 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 为 R n R^n Rn 的基, β ∈ R n \beta \in R^n β∈Rn ,若 β = k 1 α 1 + k 2 α 2 + ⋯ + k n α n \beta=k_1\alpha_1+k_2\alpha_2+\dots+k_n\alpha_n β=k1α1+k2α2+⋯+knαn ,称 ( k 1 , k 2 , … , k n ) (k_1,k_2,\dots,k_n) (k1,k2,…,kn) 为向量 β \beta β 在基 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 下的坐标。
过渡矩阵 —— 由一组基变换为另一组基,可乘上一个矩阵,该矩阵称为过渡矩阵。
需要一些直观印象,才能更好理解向量空间。首先应理解的是,一个矩阵就代表一种变换。
4.2 基本性质
定理 1 设 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 为 n n n 维向量空间 R n R^n Rn 的基, β ∈ R n \beta \in R^n β∈Rn ,令 A = ( α 1 , α 2 , … , α n ) A=(\pmb{\alpha_1,\alpha_2,\dots,\alpha_n}) A=(α1,α2,…,αn) ,则向量 β \beta β 在基 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 下的坐标为 X = A − 1 β . \pmb{X=A^{-1}\beta}. X=A−1β.
定理 2 —— 设 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 与 β 1 , β 2 , … , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,…,βn 为向量空间 R n R^n Rn 的两个基,令 A = ( α 1 , α 2 , … , α n ) , B = ( β 1 , β 2 , … , β n ) A=(\pmb{\alpha_1,\alpha_2,\dots,\alpha_n}),B=(\pmb{\beta_1,\beta_2,\dots,\beta_n}) A=(α1,α2,…,αn),B=(β1,β2,…,βn) ,则从基 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 到基 β 1 , β 2 , … , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,…,βn 的过渡矩阵为 Q = A − 1 B . \pmb{Q=A^{-1}B}. Q=A−1B.
定理 3 —— 从基 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 到基 β 1 , β 2 , … , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,…,βn 的过渡矩阵与从基 β 1 , β 2 , … , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,…,βn 到基 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,…,αn 到的过渡矩阵互为逆矩阵。
写在最后
到此,向量的理论部分就结束了。矩阵、向量、方程组三者的联系最近会总结发出来的。
相关文章:
【考研数学】线形代数第三章——向量 | 3)向量组秩的性质、向量空间、过渡矩阵
文章目录 引言三、向量组等价、向量组的极大线性无关组与秩3.2 向量组秩的性质 四、 n n n 维向量空间4.1 基本概念4.2 基本性质 写在最后 引言 紧接前文学习完向量组秩的基本概念后,继续往后学习向量的内容。 三、向量组等价、向量组的极大线性无关组与秩 3.2 向…...

【技术】SpringBoot Word 模板替换
SpringBoot Word 模板替换 什么是 Word 模板替换如何实现 Word 模板替换 什么是 Word 模板替换 模板一般是具有固定格式的内容,其中一部分需要替换。Word 模板通俗的讲是以 Word 的形式制作模板,固定格式和内容,然后将其中的一部分数据替换掉…...
java jni nv21和nv12互转
目录 libyuv性能比较 NV12 NV21 YUV420格式介绍 jni YUV420toYUV420SemiPlanar java YUV420toYUV420SemiPlanar java NV12toYUV420SemiPlanar jni NV12toYUV420SemiPlanar...
后端面试话术集锦第二篇:spring boot面试话术
🚗后端面试集锦目录 💖后端面试话术集锦第一篇:spring面试话术💖 💖后端面试话术集锦第二篇:spring boot面试话术💖 💖后端面试话术集锦第三篇:spring cloud面试话术💖 💖后端面试话术集锦第四篇:ElasticSearch面试话术💖 💖后端面试话术集锦第五篇:r…...
Doris中分区和分桶使用教程
1 分区与分桶 Doris中有两层的数据划分,第一层是分区(Partition),第二层是分桶(Bucket), Partition又能分为Range分区和List分区。 Bucket仅支持Hash方式。 1.1 Partition 只能指定…...

电脑不安装软件,怎么将手机文件传输到电脑?
很多人都知道,AirDroid有网页版(web.airdroid.com)。 想要文件传输,却不想在电脑安装软件时,AirDroid的网页版其实也可以传输文件。 然而,要将文件从手机传输文件到网页端所在的电脑时,如果按…...
vue3 publish 出现的问题
vue3项目使用 yarn build 编译出dist文件, 发布后出现错误 #问题与解决 1)登录迭代错误(Maximum call stack size exceeded) >deepclone 的问题 在 GrandhallLayout 中判断菜单和权限中; const mainMenu cloneDeep(router.getRoutes()) lodash.clonedee…...

网络防御和入侵检测
网络防御和入侵检测是维护网络安全的关键任务,可以帮助识别和阻止未经授权的访问和恶意行为。以下是一些基本的步骤和方法,用于进行网络防御和入侵检测。 网络防御: 防火墙设置: 部署防火墙来监控和控制网络流量,阻止…...

【科研论文配图绘制】task5 SciencePlots绘图包入门
【科研论文配图绘制】task5 SciencePlots绘图包入门 task5主要学习了SciencePlots拓展包的出图样式,掌握SciencePlots的安装及具体使用。 SciencePlots作为一个专门用于科研论文绘图的第三方拓展工具包,提供了主流英文科技 期刊(如 Nature、Science 和 …...

R语言常用数学函数
目录 1. - * / ^ 2.%/%和%% 3.ceiling,floor,round 4.signif,trunc,zapsamll 5.max,min,mean,pmax,pmin 6.range和sum 7.prod 8.cumsum,cumprod,cummax,cummin 9.sort 10. approx 11.approx fun 12.diff 13.sign 14.var和sd 15.median 16.IQR 17.ave 18.five…...

公网远程访问局域网SQL Server数据库
文章目录 1.前言2.本地安装和设置SQL Server2.1 SQL Server下载2.2 SQL Server本地连接测试2.3 Cpolar内网穿透的下载和安装2.3 Cpolar内网穿透的注册 3.本地网页发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4.公网访问测试5.结语 1.前言 数据库的重要性相信大家都有所了解&…...

Apache Celeborn 让 Spark 和 Flink 更快更稳更弹性
摘要:本文整理自阿里云/数据湖 Spark 引擎负责人周克勇(一锤)在 Streaming Lakehouse Meetup 的分享。内容主要分为五个部分: Apache Celeborn 的背景Apache Celeborn——快Apache Celeborn——稳Apache Celeborn——弹Evaluation…...

华为数通方向HCIP-DataCom H12-821题库(单选题:141-160)
第141题 Router-LSA 能够描述不同的链路类型,不属于Router LSA 链路类型的是以下哪一项? A、Link Type 可以用来描述到末梢网络的连接,即 SubNet B、Link Type 可以用来描述到中转网络的连接,即 TranNet C、Link Type 可以用来描述到另一…...

Windows-docker集成SRS服务器的部署和使用
Windows-docker集成SRS服务器的部署和使用 一、Windows Docker安装 Docker Desktop 官方下载地址: https://docs.docker.com/desktop/install/windows-install/ 下载windows版本的就可以了。 注意:此方法仅适用于 Windows 10 操作系统专业版、企业版、…...
element-ui table表格滚动条拉到最右侧 表头与内容不能对齐
1.问题概述 当表格数据太多,会出现纵向滚动条和横向滚动条,把横向滚动条拉到最右侧时,会出现表头与内容不能对齐的现象。 2.解决方法 1.当页面数据加载完毕后,在后面加上 this.$nextTick(() > {this.$refs.table.doLayout()…...
React中的性能测试工具组件Profiler的基本使用
React中的性能测试工具组件Profiler是一个非常有用的工具,它可以帮助我们分析React应用程序的性能瓶颈。在本文中,我们将学习如何使用Profiler组件来测试React应用程序的性能。 首先,让我们来了解一下Profiler组件的基本用法。在React中&…...

提升生产效率,降低运维成本:纺织业物联网网关应用
在众多物联网技术应用中纺织业正逐渐崭露头角。物联网技术通过无线连接纺织设备、PLC、传感器,实现了纺织厂的生产数据信息的远程监控和数据采集、远程管理,为企业提供了更高效、智能的生产方式。智联物联小编在本文中将重点介绍纺织业物联网的应用与通讯…...

【学习笔记】求解线性方程组的G-S迭代法
求解线性方程组的G-S迭代法 // 运行不成功啊function [x,k,index] Gau_Seid(A,b,ep,it_max) % 求解线性方程组的G-S迭代法,其中 % A为方程组的系数矩阵 % b为方程组的右端项 % ep为精度要求,省缺为1e-5 % it_max为最大迭代次数,省缺为100 % …...
Kotlin协程flow缓冲buffer
Kotlin协程flow缓冲buffer 先看一个普通的flow: import kotlinx.coroutines.delay import kotlinx.coroutines.flow.* import kotlinx.coroutines.runBlocking import kotlin.system.measureTimeMillisfun main(args: Array<String>) {val delayTime 100Lru…...

完全免费的GPT,最新整理,2023年8月24日,已人工验证,不用注册,不用登录,更不用魔法,点开就能用
完全免费的ChatGPT,最新整理,2023年8月24日,已人工验证, 不用注册,不用登录,更不用魔法,点开就能用! 第一个:网址地址统一放在文末啦!文末直达 看上图你就能…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...