当前位置: 首页 > news >正文

Focal Loss-解决样本标签分布不平衡问题

文章目录

    • 背景
      • 交叉熵损失函数
      • 平衡交叉熵函数
    • Focal Loss损失函数
      • Focal Loss vs Balanced Cross Entropy
      • Why does Focal Loss work?
    • 针对VidHOI数据集
    • Reference

背景

Focal Loss由何凯明提出,最初用于图像领域解决数据不平衡造成的模型性能问题。

交叉熵损失函数

L o s s = L ( y , p ^ ) = − y l o g ( p ^ ) − ( 1 − y ) l o g ( 1 − p ^ ) Loss=L(y,\hat{p})=-ylog(\hat{p})-(1-y)log(1-\hat{p}) Loss=L(y,p^)=ylog(p^)(1y)log(1p^)

其中, p ^ \hat{p} p^为预测概率大小。y为label,二分类中对应0和1。
L c e ( y , p ^ ) = { − l o g ( p ^ ) , if  y = 1 − l o g ( 1 − p ^ ) , if  y = 0 L_{ce}(y,\hat{p})= \left\{ \begin{array}{ll} -log(\hat{p}), & \text{if } y = 1 \\ -log(1-\hat{p}), & \text{if }y=0 \end{array} \right. Lce(y,p^)={log(p^),log(1p^),if y=1if y=0
对于所有样本,需要求平均作为最终的结果:
L = 1 N ∑ i = 1 N l ( y i , p ^ i ) L=\frac{1}{N}\sum_{i=1}^{N}l(y_i,\hat{p}_i) L=N1i=1Nl(yi,p^i)
对于二分类问题,可以改写成:
L = 1 N ( ∑ y i = 1 m − l o g ( p ^ ) + ∑ y i = 0 n − l o g ( 1 − p ^ ) ) L=\frac{1}{N}(\sum_{y_i=1}^{m}-log(\hat{p})+\sum_{y_i=0}^{n}-log(1-\hat{p})) L=N1(yi=1mlog(p^)+yi=0nlog(1p^))
其中,N为样本总数,m和n为正、负样本数, m + n = N m+n=N m+n=N

当样本分布不平衡时,损失函数L的分布也会发生倾斜,若m>>n时,正样本就会在损失函数中占据主导地位,由于损失函数的倾斜,训练的模型会倾向于样本较多的类别,导致对较少样本类别的性能较差。

平衡交叉熵函数

对于样本不平衡造成的损失函数倾斜,最直接的方法就是添加权重因子,提高少数类别在损失函数中的权重,从而平衡损失函数的分布。还是以之前的二分类问题为例,我们添加权重参数 α ∈ [ 0 , 1 ] \alpha∈[0,1] α[0,1]
L = 1 N ( ∑ y i = 1 m − α l o g ( p ^ ) + ∑ y i = 0 n − ( 1 − α ) l o g ( 1 − p ^ ) ) L=\frac{1}{N}(\sum_{y_i=1}^{m}-\alpha log(\hat{p})+\sum_{y_i=0}^{n}-(1-\alpha)log(1-\hat{p})) L=N1(yi=1mαlog(p^)+yi=0n(1α)log(1p^))
其中, α 1 − α = n m \frac{\alpha}{1-\alpha}=\frac{n}{m} 1αα=mn,权重大小由正负样本数量比来设置。

Focal Loss损失函数

Focal Loss从loss角度提供了一种样本不均衡的解决方案:
L f o c a l ( y , p ^ ) = { − ( 1 − p ^ ) γ l o g ( p ^ ) , if  y = 1 − p ^ γ l o g ( 1 − p ^ ) , if  y = 0 L_{focal}(y,\hat{p})= \left\{ \begin{array}{ll} -(1-\hat{p})^\gamma log(\hat{p}), & \text{if } y = 1 \\ -\hat{p}^\gamma log(1-\hat{p}), & \text{if }y=0 \end{array} \right. Lfocal(y,p^)={(1p^)γlog(p^),p^γlog(1p^),if y=1if y=0
p t = { p ^ , if  y = 1 1 − p ^ , otherwise.  p_t= \left\{ \begin{array}{ll} \hat{p}, & \text{if } y = 1 \\ 1-\hat{p}, & \text{otherwise. } \end{array} \right. pt={p^,1p^,if y=1otherwise. 

则表达式统一为:
L f o c a l = − ( 1 − p t ) γ l o g ( p t ) L_{focal}=-(1-p_t)^\gamma log(p_t) Lfocal=(1pt)γlog(pt)
与交叉熵表达式对照: L c e = − l o g ( p t ) L_{ce}=-log(p_t) Lce=log(pt),仅仅多了一个可变系数 ( 1 − p t ) γ (1-p_t)^\gamma (1pt)γ.

其中, p t p_t pt反应了与ground truth的接近程度,越大表示分类越准。 γ > 0 \gamma>0 γ>0为调节因子。

对于分类不准确的样本, p t → 0 p_t→0 pt0 ( 1 − p t ) γ → 1 (1-p_t)^\gamma→1 (1pt)γ1 L f o c a l → L c e L_{focal}→L_{ce} LfocalLce;对于分类准确的样本, p t → 1 p_t→1 pt1 ( 1 − p t ) γ → 0 (1-p_t)^\gamma→0 (1pt)γ0 L f o c a l → 0 L_{focal}→0 Lfocal0;因此,Focal Loss对于分类不准确的样本,损失没有改变;对于分类准确的样本,损失会变小。整体来看,Focal Loss增加了分类不准确样本在损失函数中的权重。

如下是不同调节因子 γ \gamma γ对应的Loss-proba分布图,可以看出Cross Entropy(CE)和Focal Loss(FL)之间的区别,Focal Loss使损失函数更倾向于难分的样本。

在这里插入图片描述

Focal Loss vs Balanced Cross Entropy

  • Focal Loss是从样本分类难易程度出发,让Loss聚焦于难分类的样本;
  • Balanced Cross Entropy是从样本分布角度对Loss添加权重因子。
    • 缺点:仅仅考虑样本分布,有些难以区分的类别的样本数可能也比较多,此时被BCE赋予了较低的权重,会导致模型很难识别该类别!

Why does Focal Loss work?

Focal Loss从样本难易分类的角度出发,解决了样本不平衡导致模型性能较低的问题。

WHY?

样本不平衡造成的问题就是,样本数少的类别分类难度大,因此Focal Loss聚焦于难分样本,解决了样本少的类别分类精度不高的问题,对于难分样本中样本多的类别,也会被Focal Loss聚焦。因此,它不仅解决了样本不平衡问题,还提升了模型整体性能。

但是,要使模型训练过程中聚焦于难分类样本,仅仅将Loss倾向于难分类样本是不够的,因为模型参数更新取决于Loss的梯度:
w = w − α ∂ L ∂ w w=w-\alpha\frac{\partial L}{\partial w} w=wαwL
若Loss中难分类样本的权重较高,但是难分类样本的Loss梯度为0,难分类样本就不会影响到模型的参数更新。对于梯度问题,Focal Loss中的梯度与 x t x_t xt的关系如下所示,其中 x t = y x x_t=yx xt=yx y ∈ { − 1 , 1 } y∈\{-1,1\} y{1,1}为类别, p t = σ ( x t ) p_t=\sigma(x_t) pt=σ(xt),对于易分样本, x t > 0 x_t>0 xt>0,即 p t > 0.5 p_t>0.5 pt>0.5,由下图可知,此时的导数趋于0。对于难分样本,导数数值较大,因此,学习过程中更聚焦于难分样本。

在这里插入图片描述

难易分类样本是动态的, p t p_t pt在训练的过程中,可能会在难易之间相互转换。

在Loss梯度中,难训练样本起主导作用,参数朝着优化难训练样本的方向改变,变化之后可能会导致原本易训练的样本 p t p_t pt变化,即变成难训练样本。若发生了这种情况会导致模型收敛速度较慢。

为了防止这种难易样本的频繁变化,应该选择较小的学习率。

针对VidHOI数据集

因为VidHOI数据集中的一个人-物对会被多个交互标签同时标注,如< human,next to & watch & hold, cup >,所以会面临multi-class multi-label的分类问题。以往常常使用Binary cross-entropy,能够计算每个交互类别独立于其他类别的损失。但是,VidHOI数据集分布不均且具有长尾分布,为了解决这个不均衡问题同时避免过分强调最频繁类别的重要性,我们采用class-balanced Focal loss:
C B f o c a l ( p i , y i ) = − 1 − β 1 − β n i ( 1 − p y i ) γ l o g ( p y i ) w i t h p y i = { p i , if  y i = 1 1 − p i , otherwise. CB_{focal}(p_i,y_i)=-\frac{1-\beta}{1-\beta^{n_i}}(1-p_{y_i})^{\gamma}log(p_{y_i}) \\ with \ p_{y_i} = \left\{ \begin{array}{ll} p_i, & \text{if } y_i = 1 \\ 1-p_i, & \text{otherwise.} \end{array} \right. CBfocal(pi,yi)=1βni1β(1pyi)γlog(pyi)with pyi={pi,1pi,if yi=1otherwise.

其中的 − ( 1 − p y i ) γ l o g ( p y i ) -(1-p_{y_i})^{\gamma}log(p_{y_i}) (1pyi)γlog(pyi)是Lin提出的Focal loss, p i p_i pi表示预估为第i个类别的可能性, y i ∈ { 0 , 1 } y_i∈\{0,1\} yi{0,1}表示Ground Truth的label。变量 n i n_i ni表示第i个类别在Ground Truth下的样本量, β ∈ [ 0 , 1 ) \beta∈[0,1) β[0,1)是可调节参数。所有类别的平均损失作为一个预测的损失。

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optionalclass FocalBCEWithLogitLoss(nn.modules.loss._Loss):"""Focal Loss with binary cross-entropyImplement the focal loss with class-balanced loss, using binary cross-entropy as criterionFollowing paper "Class-Balanced Loss Based on Effective Number of Samples" (CVPR2019)Args:gamma (int, optional): modulation factor gamma in focal loss. Defaults to 2.alpha (int, optional): modulation factor alpha in focal loss. If a integer, apply to all;if a list or array or tensor, regard as alpha for each class; if none, no alpha. Defaults to None.weight (Optional[torch.Tensor], optional): weight to each class, !not the same as alpha. Defaults to None.size_average (_type_, optional): _description_. Defaults to None.reduce (_type_, optional): _description_. Defaults to None.reduction (str, optional): _description_. Defaults to "mean"."""def __init__(self,gamma=2,alpha=None,weight: Optional[torch.Tensor] = None,size_average=None,reduce=None,reduction: str = "mean",pos_weight: Optional[torch.Tensor] = None,):super(FocalBCEWithLogitLoss, self).__init__(size_average, reduce, reduction)self.gamma = gamma# a number for all, or a Tensor with the same num_classes as inputif isinstance(alpha, (list, np.ndarray)):self.alpha = torch.Tensor(alpha)else:self.alpha = alphaself.register_buffer("weight", weight)self.register_buffer("pos_weight", pos_weight)self.weight: Optional[torch.Tensor]self.pos_weight: Optional[torch.Tensor]def forward(self, input: torch.Tensor, target: torch.Tensor):if self.alpha is not None:if isinstance(self.alpha, torch.Tensor):alpha_t = self.alpha.repeat(input.shape[0], 1)else:alpha_t = torch.ones_like(input) * self.alphaelse:alpha_t = None# 二元交叉熵ce = F.binary_cross_entropy_with_logits(input, target, reduction="none")# pt = torch.exp(-ce)# modulator = ((1 - pt) ** self.gamma)# following author's repo https://github.com/richardaecn/class-balanced-loss/blob/master/src/cifar_main.py#L226-L266# explaination https://github.com/richardaecn/class-balanced-loss/issues/1# A numerically stable implementation of modulator.if self.gamma == 0.0:modulator = 1.0else:# e^(-gamma*target*input - gamma*log(1+e^(-input)))modulator = torch.exp(-self.gamma * target * input - self.gamma * torch.log1p(torch.exp(-input)))# focal lossfl_loss = modulator * ce# alphaif alpha_t is not None:alpha_t = alpha_t * target + (1 - alpha_t) * (1 - target)fl_loss = alpha_t * fl_loss# pos weightif self.pos_weight is not None:fl_loss = self.pos_weight * fl_loss# reductionif self.reduction == "mean":return fl_loss.mean()elif self.reduction == "sum":return fl_loss.sum()else:return fl_loss

C B f o c a l ( p i , y i ) = − 1 − β 1 − β n i ( 1 − p y i ) γ l o g ( p y i ) w i t h p y i = { p i , if  y i = 1 1 − p i , otherwise. CB_{focal}(p_i,y_i)=-\frac{1-\beta}{1-\beta^{n_i}}(1-p_{y_i})^{\gamma}log(p_{y_i}) \\ with \ p_{y_i} = \left\{ \begin{array}{ll} p_i, & \text{if } y_i = 1 \\ 1-p_i, & \text{otherwise.} \end{array} \right. CBfocal(pi,yi)=1βni1β(1pyi)γlog(pyi)with pyi={pi,1pi,if yi=1otherwise.

原始版本的代码:

def focal_loss(labels, logits, alpha, gamma):"""Compute the focal loss between `logits` and the ground truth `labels`.Focal loss = -alpha_t * (1-pt)^gamma * log(pt)where pt is the probability of being classified to the true class.pt = p (if true class), otherwise pt = 1 - p. p = sigmoid(logit).Args:labels: A float32 tensor of size [batch, num_classes].logits: A float32 tensor of size [batch, num_classes].alpha: A float32 tensor of size [batch_size]specifying per-example weight for balanced cross entropy.gamma: A float32 scalar modulating loss from hard and easy examples.Returns:focal_loss: A float32 scalar representing normalized total loss."""with tf.name_scope('focal_loss'):logits = tf.cast(logits, dtype=tf.float32)cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits)# positive_label_mask = tf.equal(labels, 1.0)# probs = tf.sigmoid(logits)# probs_gt = tf.where(positive_label_mask, probs, 1.0 - probs)# # With gamma < 1, the implementation could produce NaN during back prop.# modulator = tf.pow(1.0 - probs_gt, gamma)# A numerically stable implementation of modulator.if gamma == 0.0:modulator = 1.0else:modulator = tf.exp(-gamma * labels * logits - gamma * tf.log1p(tf.exp(-1.0 * logits)))loss = modulator * cross_entropyweighted_loss = alpha * lossfocal_loss = tf.reduce_sum(weighted_loss)# Normalize by the total number of positive samples.focal_loss /= tf.reduce_sum(labels)return focal_loss

Reference

  1. https://zhuanlan.zhihu.com/p/266023273
  2. https://github.com/nizhf/hoi-prediction-gaze-transformer
  3. https://github.com/richardaecn/class-balanced-loss/blob/master/src/cifar_main.py#L226-L266

相关文章:

Focal Loss-解决样本标签分布不平衡问题

文章目录 背景交叉熵损失函数平衡交叉熵函数 Focal Loss损失函数Focal Loss vs Balanced Cross EntropyWhy does Focal Loss work? 针对VidHOI数据集Reference 背景 Focal Loss由何凯明提出&#xff0c;最初用于图像领域解决数据不平衡造成的模型性能问题。 交叉熵损失函数 …...

运算符(个人学习笔记黑马学习)

算数运算符 加减乘除 #include <iostream> using namespace std;int main() {int a1 10;int a2 20;cout << a1 a2 << endl;cout << a1 - a2 << endl;cout << a1 * a2 << endl;cout << a1 / a2 << endl;/*double a3 …...

开源与专有软件:比较与对比

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

openResty+lua+redis实现接口访问频率限制

openResty简介&#xff1a; OpenResty 是一个基于 Nginx 与 Lua 的高性能 Web 平台&#xff0c;其内部集成了大量精良的 Lua 库、第三方模块以及大多数的依赖项。用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。 OpenResty 通过汇聚各种设…...

自动化测试(三):接口自动化pytest测试框架

文章目录 1. 接口自动化的实现2. 知识要点及实践2.1 requests.post传递的参数本质2.2 pytest单元测试框架2.2.1 pytest框架简介2.2.2 pytest装饰器2.2.3 断言、allure测试报告2.2.4 接口关联、封装改进YAML动态传参&#xff08;热加载&#xff09; 2.3 pytest接口封装&#xff…...

Python --datetime模块

目录 1&#xff0c; 获取datetime时间 2&#xff0c; datetime与timestamp转换 2-1&#xff0c; datetime转timestamp 2-2&#xff0c; timestamp转datetime 3&#xff0c; str格式与datetime转换 3-1&#xff0c; datetime转str格式 3-2&#xff0c; str格式转datetime…...

顺序表链表OJ题(3)——【数据结构】

W...Y的主页 &#x1f60a; 代码仓库分享 &#x1f495; 前言&#xff1a; 今天是链表顺序表OJ练习题最后一次分享&#xff0c;每一次的分享题目的难度也再有所提高&#xff0c;但是我相信大家都是非常机智的&#xff0c;希望看到博主文章能学到东西的可以一键三连关注一下博主…...

【Azure】Virtual Hub vWAN

虚拟 WAN 文档 Azure 虚拟 WAN 是一个网络服务&#xff0c;其中整合了多种网络、安全和路由功能&#xff0c;提供单一操作界面。 我们主要讨论两种连接情况&#xff1a; 通过一个 vWAN 来连接不通的 vNET 和本地网络。以下是一个扩展的拓扑 结合 vhub&#xff0c;可以把两个中…...

React Navigation 使用导航

在 Web 浏览器中&#xff0c;您可以使用锚标记链接到不同的页面。当用户单击链接时&#xff0c;URL 会被推送到浏览器历史记录堆栈中。当用户按下后退按钮时&#xff0c;浏览器会从历史堆栈顶部弹出该项目&#xff0c;因此活动页面现在是以前访问过的页面。React Native 不像 W…...

双指针算法,基础算法实践,基本的算法的思想,双指针算法的实现

一&#xff0c;定义 双指针算法是一种常用于解决数组和链表问题的算法技巧。它的核心思想是使用两个指针在数据结构中按照一定的规则移动&#xff0c;从而达到快速搜索或处理数据的目的。这个技巧通常用于优化算法&#xff0c;降低时间复杂度&#xff0c;提高程序的执行效率。…...

idea http request无法识别环境变量

问题描述 创建了环境变量文件 http-client.env.json&#xff0c;然后在*.http 文件中引用环境变量&#xff0c;运行 HTTP 请求无法读取环境变量文件中定义的变量。 事故现场 IDEA 版本&#xff1a;2020.2 2021.2 解决步骤 2020.2 版本环境变量无法读取 2021.2 版本从 2020.…...

性能测试常见的测试指标

一、什么是性能测试 先看下百度百科对它的定义 性能测试是通过自动化的测试工具模拟多种正常、峰值以及异常负载条件来对系统的各项性能指标进行测试。我们可以认为性能测试是&#xff1a;通过在测试环境下对系统或构件的性能进行探测&#xff0c;用以验证在生产环境下系统性能…...

并发 04(Callable,CountDownLatch)详细讲解

并发 Callable 1 可以返回值 2可以抛出异常 泛型指的是返回值的类型 public class Send {public static void main(String[] args) {//怎么启动Callable//new Thread().start();Aaa threadnew Aaa();FutureTask futureTasknew FutureTask(thread);new Thread(futureTask,&qu…...

Json路径表达式

原json路径 {"timeStamp": "20220801110008","transIDO": "6ba9088c981b407fb38feasdf09","version": "1.0.0","signMethod": "md5","content": "{\"companyName\&quo…...

【uniapp 上传图片示例】

以下是 uniapp 上传图片的详细步骤示例&#xff1a; 定义一个方法&#xff0c;用于选择图片并上传&#xff1a; methods: {chooseImage() {uni.chooseImage({count: 1, // 最多选择的图片数量sizeType: [original, compressed], // 可以指定原图或压缩图sourceType: [album, …...

apache2配置文件 Require all granted是什么意思

修改apache2的配置文件 /etc/apache2/apache2.conf&#xff0c;需要增加网站代码的路径&#xff0c;下列配置是什么意思呢 <Directory "/var/www/html">Options FollowSymLinksAllowOverride AllRequire all granted </Directory> 1. Options Options …...

c/c++ 的一些知识

c 面向对象是一种思想&#xff0c;通常情况下都是以组合为主&#xff0c;也就是在子类里定义一个基类struct base_t {void (*method)(base_t *base_p); };struct children_t {int a;int b;base_t base;void (*method)(children_t *children_p); };children_t children_creat(i…...

Rancher上的应用服务报错:413 Request Entity Too Large

UI->rancher的ingress->UI前端(在nginx里面)->zuul->server 也就是说没经过一次http servlet 都要设置一下大小 1.rancher的ingress 当出现Request Entity Too Large时&#xff0c;是由于传输流超过1M。 1、需要在rancher的ingress中设置参数解决。 配置注释&a…...

【LeetCode题目详解】第八章 贪心算法 part01 理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和 day31补

贪心算法理论基础 关于贪心算法&#xff0c;你该了解这些&#xff01; 题目分类大纲如下&#xff1a; # 什么是贪心 贪心的本质是选择每一阶段的局部最优&#xff0c;从而达到全局最优。 这么说有点抽象&#xff0c;来举一个例子&#xff1a; 例如&#xff0c;有一堆钞票&…...

ssm+vue中国咖啡文化宣传网站源码和论文

ssmvue中国咖啡文化宣传网站源码和论文078 开发工具&#xff1a;idea 数据库mysql5.7 数据库链接工具&#xff1a;navcat,小海豚等 技术&#xff1a;ssm 课题背景 随着时代的发展和人们生活理念的进一步改变&#xff0c;咖啡业已经成为了全球经济中发展最迅猛的产业之一。…...

基于MATLAB开发AUTOSAR软件应用层Code mapping专题-part 4 Data store标签页介绍

这篇文章我们继续讲解code-mapping的Data stores页,这个页的内容对应的SIMULINK中的模块是Data store memory。 我们首先在模型中创建一个Data store memory模块,如图: Data store memory模块的作用相当于一个全局变量,我们可以在模型的功能逻辑里将一个信号存进去,在另…...

区间型动态规划典型题目:lintcode 476 · 石子归并【中等,免费】lintcode 593 · 石头游戏 II【中等 vip】

题目lintcode476 链接&#xff0c;描述 https://www.lintcode.com/problem/476/description 有一个石子归并的游戏。最开始的时候&#xff0c;有n堆石子排成一列&#xff0c;目标是要将所有的石子合并成一堆。合并规则如下&#xff1a;每一次可以合并相邻位置的两堆石子 每次…...

4. 池化层相关概念

4.1 池化层原理 ① 最大池化层有时也被称为下采样。 ② dilation为空洞卷积&#xff0c;如下图所示。 ③ Ceil_model为当超出区域时&#xff0c;只取最左上角的值。 ④ 池化使得数据由5 * 5 变为3 * 3,甚至1 * 1的&#xff0c;这样导致计算的参数会大大减小。例如1080P的电…...

ChatGPT Prompting开发实战(一)

一、关于ChatGPT Prompting概述 当我们使用ChatGPT或者调用OpenAI的API时&#xff0c;就是在使用prompt进行交互&#xff0c;用户在对话过程中输入的一切信息都是prompt&#xff08;提示词&#xff09;&#xff0c;当然工业级的prompt与人们通常理解的prompt可能不太一样。下面…...

VB车辆管理系统SQL设计与实现

摘 要 随着信息时代的到来,信息高速公路的兴起,全球信息化进入了一个新的发展时期。人们越来越认识到计算机强大的信息模块处理功能,使之成为信息产业的基础和支柱。 我国经济的快速发展,汽车已经成为人们不可缺少的交通工具。对于拥有大量车辆的机关企事业来说,车辆的…...

java 泛型

概述 泛型在java中有很重要的地位&#xff0c;在面向对象编程及各种设计模式中有非常广泛的应用。 泛型&#xff0c;就是类型参数。 一提到参数&#xff0c;最熟悉的就是定义方法时有形参&#xff0c;然后调用此方法时传递实参。 那么类型参数理解呢&#xff1f; 顾名思义&…...

git 查看/配置 local/global 用户名称和用户邮箱

1、--local: 本地设置&#xff08;仅对当前仓库有效&#xff09; git config --local user.name “你的名称” git config --local user.email “你的邮箱” 2、--global 全局设置&#xff08;对当前用户的所有仓库有效&#xff09; git config --global user.name “你的名称…...

无涯教程-分类算法 - 简介

分类可以定义为根据观测值或给定数据点预测类别的过程。分类的输出可以采用"黑色"或"白色"或"垃圾邮件"或"非垃圾邮件"的形式。 在数学上&#xff0c;分类是从输入变量(X)到输出变量(Y)近似映射函数(f)的任务&#xff0c;它属于有监督…...

python venv 打包,更换路径后,仍然读取到旧路径 ,最好别换路径,采用docker封装起来

机械盘路径 /home/yeqiang/code/xxx 移动到 /opt/xxx 编辑/opt/xxx/venv/bin/activate VIRTUAL_ENV"/home/yeqiang/code/xxx/venv" 改为 VIRTUAL_ENV"/opt/xxx/venv" 下面还有这么多&#xff0c;参考&#xff1a; (venv) yeqiangyeqiang-MS-7B23:/…...

MATLAB算法实战应用案例精讲-【自然语言处理】语义分割模型-DeepLabV3

目录 1、DeepLab系列简介 1.1.DeepLabV1 1.1.1创新点&#xff1a; 1.1.2. 动机&#xff1a; 1.1.3. 应对策略&#xff1a; 1.2.DeepLabV2 1.2.1.创新点&#xff1a; 1.2.2.动机 1.2.3. 应对策略&#xff1a; 1.3.DeepLabV3 1.3.1创新点&#xff1a; 1.3.2. 动机&am…...