当前位置: 首页 > news >正文

matlab使用教程(24)—常微分方程(ODE)求解器

1.常微分方程

        常微分方程 (ODE) 包含与一个自变量 t(通常称为时间)相关的因变量 y 的一个或多个导数。此处用于表示 y 关于 t 的导数的表示法对于一阶导数为 y ,对于二阶导数为 y ′′,依此类推。ODE 的阶数等于 y 在方程中出现的最高阶导数。
        例如,这是一个二阶 ODE:
y ′′ = 9 y
        在初始值问题中,从初始状态开始解算 ODE。利用初始条件 y 0 以及要在其中求得答案的时间段(t0,tf ),以迭代方式获取解。在每一步,求解器都对之前各步的结果应用一个特定算法。在第一个这样的时间步,初始条件将提供继续积分所需的必要信息。最终结果是,ODE 求解器返回一个时间步向量t = [ t 0 , t 1 , t 2 , ..., t f ] 以及在每一步对应的解 y = [y0 , y 1 , y 2 , ..., yf ]。

2.ODE 的类型

        MATLAB 中的 ODE 求解器可解算以下类型的一阶 ODE:
        • y ′ = f(t , y  )形式的显式 ODE。
        • M (t , y )y ′ = f (t , y  )形式的线性隐式 ODE,其中 M t , y 为非奇异质量矩阵。该质量矩阵可以是时间或状态依赖的矩阵,也可以是常量矩阵。线性隐式 ODE 涉及在质量矩阵中编码的一阶 y 导数的线性组合。
        线性隐式 ODE 可随时变换为显式形式 y′ = M^{-1}(t,y)f(t,y)。不过,将质量矩阵直接指定给 ODE 求解器可避免这种既不方便还可能带来大量计算开销的变换操作。
        • 如果 y′ 的某些分量缺失,则这些方程称为微分代数方程或 DAE,并且 DAE 方程组会包含一些代数变量。代数变量是导数未出现在方程中的因变量。可通过对方程求导来将 DAE 方程组重写为等效的一阶ODE 方程组,以消除代数变量。将 DAE 重写为 ODE 所需的求导次数称为微分指数。 ode15sode23t 求解器可解算微分指数为 1 的 DAE。
        • f( t , y , y ′ )= 0 形式的完全隐式 ODE。完全隐式 ODE 不能重写为显式形式,还可能包含一些代数变量。ode15i 求解器专为完全隐式问题(包括微分指数为 1 的 DAE)而设计。
        可通过使用 odeset 函数创建 options 结构体,来针对某些类型的问题为求解器提供附加信息。

3.ODE 方程组

        您可以指定需要解算的任意数量的 ODE 耦合方程,原则上,方程的数量仅受计算机可用内存的限制。如果方程组包含 n 个方程,
        则用于编写该方程组代码的函数将返回一个向量,其中包含 n 个元素,对应于 y 1 , y 2 , … , y n 值。例如,考虑以下包含两个方程的方程组
        用于编写该方程组代码的函数为
function dy = myODE(t,y)
dy(1) = y(2);
dy(2) = y(1)*y(2)-2;
end

4.高阶 ODE

        MATLAB ODE 求解器仅可解算一阶方程。您必须使用常规代换法,将高阶 ODE 重写为等效的一阶方程组
y 1 = y
y 2 = y
y 3 = y ′′
y n = y^{n-1} .
        这些代换将生成一个包含 n 个一阶方程的方程组

        例如,考虑三阶 ODE :y′′′ − y′′y + 1 = 0,并使用代换法

y 1 = y
y 2 = y
y 3 = y ′′
        生成等效的一阶方程组

        此方程组的代码则为 

function dydt = f(t,y)dydt(1) = y(2);dydt(2) = y(3);dydt(3) = y(1)*y(3)-1;
end

5.复数 ODE

        考虑复数 ODE 方程
y ′ = f (t , y ) ,
        其中 y = y 1 + iy 2。为解算该方程,需要将实部和虚部分解为不同的解分量,最后重新组合相应的结果。从概念上讲,这类似于
例如,如果 ODE 为 y ′ = yt + 2 i ,则可以使用函数文件来表示该方程:
function f = complexf(t,y)
f = y.*t + 2*i;
end
        然后,分解实部和虚部的代码为
function fv = imaginaryODE(t,yv)
% Construct y from the real and imaginary components
y = yv(1) + i*yv(2);
% Evaluate the function
yp = complexf(t,y);
% Return real and imaginary in separate components
fv = [real(yp); imag(yp)];
end
        在运行求解器以获取解时,初始条件 y0 也会分解为实部和虚部,以提供每个解分量的初始条件。
y0 = 1+i;
yv0 = [real(y0); imag(y0)];
tspan = [0 2];
[t,yv] = ode45(@imaginaryODE, tspan, yv0);
        获得解后,将实部和虚部分量组合到一起可获得最终结果。
y = yv(:,1) + i*yv(:,2);

6.基本求解器选择

        ode45 适用于大多数 ODE 问题,一般情况下应作为您的首选求解器。但对于精度要求更宽松或更严格的问题而言, ode23 ode78 ode89 ode113 可能比 ode45 更加高效。
        一些 ODE 问题具有较高的计算刚度或难度。术语“刚度”无法精确定义,但一般而言,当问题的某个位置存在标度差异时,就会出现刚度。例如,如果 ODE 包含的两个解分量在时间标度上差异极大,则该方程可能是刚性方程。如果非刚性求解器(例如 ode45)无法解算某个问题或解算速度极慢,则可以将该问题视为刚性问题。如果您观察到非刚性求解器的速度很慢,请尝试改用 ode15s 等刚性求解器。在使用刚性求解器时,可以通过提供 Jacobian 矩阵或其稀疏模式来提高可靠性和效率。
        下表提供了关于何时使用每种不同求解器的一般指导原则。

 

7.ODE 示例和文件摘要

        有几个示例文件可用作大多数 ODE 问题的有用起点。要运行微分方程示例应用,以便轻松浏览和运行示例,请键入
odeexamples
        要打开单独的示例文件进行编辑,请键入
edit exampleFileName.m
        要运行示例,请键入
exampleFileName
        此表包含可用的 ODE 和 DAE 示例文件及其使用的求解器和选项的列表。其中包含示例子集的链接,这些示例也已直接发布在文档中。

相关文章:

matlab使用教程(24)—常微分方程(ODE)求解器

1.常微分方程 常微分方程 (ODE) 包含与一个自变量 t(通常称为时间)相关的因变量 y 的一个或多个导数。此处用于表示 y 关于 t 的导数的表示法对于一阶导数为 y ′ ,对于二阶导数为 y ′′,依此类推。ODE 的阶数等于 y 在方程中…...

企业级数据共享规模化模式

数据共享正在成为企业数据战略的重要元素。对于公司而言,Amazon Data Exchange 这样的亚马逊云科技服务提供了与其他公司共享增值数据或从这些数据获利的途径。一些企业希望有一个数据共享平台,他们可以在该平台上建立协作和战略方法,在封闭、…...

Web服务器-Tomcat详细原理与实现

Tomcat 安装与使用 :MAC 安装配置使用Tomcat - 掘金 安装后本计算机就相当于一台服务器了!!! 方式一:使用本地安装的Tomcat 1、将项目文件移动到Tomcat的webapps目录下。 2、启动Tomcat 3、在浏览器输入想要加载的…...

ARM处理器核心概述

一、基于ARM处理器的嵌入式系统 ARM核深度嵌入SOC中,通过JTAG口进行外部调试。计通常既有外部内存又有内部内存,从而支持不通的内存宽度、速度和大小。一般会包含一个中断控制器。可能包含一些Primece外设,需要从ARM公司取得授权。总线使用A…...

万户协同办公平台 ezoffice存在未授权访问漏洞 附POC

文章目录 万户协同办公平台 ezoffice存在未授权访问漏洞 附POC1. 万户协同办公平台 ezoffice简介2.漏洞描述3.影响版本4.fofa查询语句5.漏洞复现6.POC&EXP7.整改意见8.往期回顾 万户协同办公平台 ezoffice存在未授权访问漏洞 附POC 免责声明:请勿利用文章内的相…...

使用ctcloss训练矩阵生成目标字符串

首先我们需要明确 c t c l o s s ctcloss ctcloss是用来做什么的。比如说要生成的目标字符串长度为 l l l,而这个字符串包含 s s s个字符,字符串允许的最大长度为 L L L,这里认为一个位置是一个时间步,就是一拍,记为 T…...

驱动 - 20230829

练习 基于platform实现 在根节点下&#xff0c;增加设备树 myplatform {compatible"hqyj,myplatform";interrupts-extended<&gpiof 9 0>, <&gpiof 7 0>, <&gpiof 8 0>;led1-gpio<&gpioe 10 0>;reg<0x12345678 59>;}…...

数组(个人学习笔记黑马学习)

一维数组 1、定义方式 #include <iostream> using namespace std;int main() {//三种定义方式//1.int arr[5];arr[0] 10;arr[1] 20;arr[2] 30;arr[3] 40;arr[4] 50;//访问数据元素/*cout << arr[0] << endl;cout << arr[1] << endl;cout &l…...

layui表格事件分析实例

在 layui 的表格组件中&#xff0c;区分表头事件和行内事件是通过事件类型&#xff08;toolbar 和 tool&#xff09;以及 lay-filter 值来实现的。 我们有一个表格&#xff0c;其中有一个工具栏按钮和操作按钮。我们将使用 layui 的 table 组件来处理这些事件。 HTML 结构&…...

Android NDK JNI与Java的相互调用

一、Jni调用Java代码 jni可以调用java中的方法和java中的成员变量,因此JNIEnv定义了一系列的方法来帮助我们调用java的方法和成员变量。 以上就是jni调用java类的大部分方法,如果是静态的成员变量和静态方法,可以使用***GetStaticMethodID、CallStaticObjectMethod等***。就…...

装备制造企业如何执行精益管理?

导 读 ( 文/ 2358 ) 精益管理是一种以提高效率、降低成本和优化流程为目标的管理方法。装备制造行业具备人工参与度高&#xff0c;产成品价值高&#xff0c;质量要求高的特点。 在装备制造企业中实施精益管理可以帮助企业提高竞争力、提升生产效率并提供高质量的产品。本文将…...

PHP8中自定义函数-PHP8知识详解

1、什么是函数&#xff1f; 函数&#xff0c;在英文中的单词是function&#xff0c;这个词语有功能的意思&#xff0c;也就是说&#xff0c;使用函数就是在编程的过程中&#xff0c;实现一定的功能。即函数就是实现一定功能的一段特定代码。 在前面的教学中&#xff0c;我们已…...

虚拟化技术:云计算发展的核心驱动力

文章目录 虚拟化技术的概念和作用虚拟化技术的优势虚拟化技术对未来发展的影响结论 &#x1f389;欢迎来到AIGC人工智能专栏~虚拟化技术&#xff1a;云计算发展的核心驱动力 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&#x1f379;✨博客主页&#xff1a;IT陈寒的博客&#x1f388;该系…...

光伏+旅游景区

传统化石燃料可开发量逐渐减少&#xff0c;并且对环境造成的危害日益突出。全世界都把目光投向了可再生能源&#xff0c;希望可再生能源能够改变人类的能源结构。丰富的太阳能取之不尽、用之不竭&#xff0c;同时对环境没有影响&#xff0c;光伏发电是近些年来发展最快&#xf…...

手搓文本向量数据库(自然语言搜索生成模型)

import paddle import jieba import pandas as pd import numpy as np import os from glob import glob from multiprocessing import Process, Manager, freeze_supportfrom tqdm import tqdm# 首先 确定的是输出的时候一定要使用pd.to_pickle() pd.read_pickle() # 计算的时…...

EVO大赛是什么

价格是你所付出的东西&#xff0c;而价值是你得到的东西 EVO大赛是什么&#xff1f; “EVO”大赛全称“Evolution Championship Series”&#xff0c;是北美最高规格格斗游戏比赛&#xff0c;大赛正式更名后已经连续举办12年&#xff0c;是全世界最大规模的格斗游戏赛事。常见…...

linux中使用clash代理

本机环境&#xff1a;ubuntu16 安装代理工具&#xff08;这里使用clash&#xff09; 可以手动下载解压&#xff0c;下载地址&#xff1a;https://github.com/Dreamacro/clash 也可以直接使用命令行&#xff0c;演示如下&#xff1a; userlocalhost:~$ curl https://glados.r…...

Kafka3.0.0版本——Follower故障处理细节原理

目录 一、服务器信息二、服务器基本信息及相关概念2.1、服务器基本信息2.2、LEO的概念2.3、HW的概念 三、Follower故障处理细节 一、服务器信息 三台服务器 原始服务器名称原始服务器ip节点centos7虚拟机1192.168.136.27broker0centos7虚拟机2192.168.136.28broker1centos7虚拟…...

13.redis集群、主从复制、哨兵

1.redis主从复制 主从复制是指将一台redis服务器&#xff08;主节点-master&#xff09;的数据复制到其他的redis服务器&#xff08;从节点-slave&#xff09;&#xff0c;默认每台redis服务器都是主节点&#xff0c;每个主节点可以有多个或没有从节点&#xff0c;但一个从节点…...

linux字符串处理

目录 1 C 截取字符串,截取两个子串中间的字符串2 获取该字符串后面的字符串用 strstr() 函数查找需要提取的特定字符串&#xff0c;然后通过指针运算获取该字符串后面的字符串用 strtok() 函数分割字符串&#xff0c;找到需要提取的特定字符串后&#xff0c;调用 strtok() 传入…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...