当前位置: 首页 > news >正文

【可视化实战】Python 绘制出来的数据大屏真的太惊艳了

今天我们在进行一个Python数据可视化的实战练习,用到的模块叫做Panel,我们通过调用此模块来绘制动态可交互的图表以及数据大屏的制作。

而本地需要用到的数据集,可在kaggle上面获取 https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires,如果无法访问kaggle,可以找我获取数据集。

导入模块和读取数据

那么首先我们先导入后面会用到的模块,代码如下

# 数据库  
import sqlite3  
# 数据处理  
import numpy as np  
import pandas as pd  
# 数据大屏  
import holoviews as hv   
import colorcet as cc  
import panel as pn  
from holoviews.element.tiles import EsriImagery  
from datashader.utils import lnglat_to_meters  
import hvplot.pandas  
hv.extension('bokeh')  

技术交流

技术要学会分享、交流,不建议闭门造车。一个人走的很快、一堆人可以走的更远。

好的技术文章离不开粉丝的分享、推荐,资料干货、资料分享、数据、ChatGPT 技术交流提升,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:pythoner666,备注:来自CSDN +备注来意
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

那么这回的数据集的背景我们这里简单的做个介绍,是涉及到1992年到2015年美国境内发生的森林火灾的分布情况,那么这里就有涉及到火灾发生的位置,也就是经纬度坐标,由于数据集是放在sqlite数据库当中,因此数据集的导入也会用到Python当中的sqlite3这个模块

# 连接数据库  
conn = sqlite3.connect('./FPA_FOD_20170508.sqlite')  
# 读取出我们需要的字段下面的数据  
df = pd.read_sql_query("SELECT LATITUDE, LONGITUDE, STAT_CAUSE_DESCR, FIRE_SIZE, FIRE_SIZE_CLASS, DISCOVERY_DATE, CONT_DATE, STATE, FIRE_YEAR FROM fires", conn)  
# 删除掉阿拉斯加等其他地方的数据  
df = df.loc[(df.loc[:,'STATE']!='AK') & (df.loc[:,'STATE']!='HI') & (df.loc[:,'STATE']!='PR')]  
# 计算大火燃烧的时间  
df['BURN_TIME'] = df['CONT_DATE'] - df['DISCOVERY_DATE']  
df.head()  

output
在这里插入图片描述

绘制地图

接下来我们来绘制一下全美各个地区发生火灾的次数,将历年发生的火灾都做一个汇总,代码如下

map_tiles = EsriImagery().opts(alpha=0.5, width=700, height=480, bgcolor='black')  
plot = df.hvplot(  'LONGITUDE',   'LATITUDE',   geo=True,  kind='points',   rasterize=True,   cmap=cc.fire,   cnorm='eq_hist',    colorbar=True).opts(colorbar_position='bottom', xlabel='', ylabel='')  
map_tiles * plot  

output

那么涉及到绘制地图,这里就需要依赖其他的模块了,例如ShapelyCartopy以及Pillow等模块,安装起来会稍显复杂,大家可以上网去查阅一下具体的步骤,那么从上面的图表中我们可以看到加州以及佛罗里达州等地发生火灾的次数较多,颜色也就比较深。

要是我们要是想要给图表添加一个时间轴,通过拖拽时间轴来不断调整图表当中数据的变化,就可以这么来做,代码如下

# 绘制时间轴  
year = pn.widgets.IntSlider(name='Year Slider', width=300,  start=1992, end=2015, value=(1993),  step=1,value_throttled=(1993))  
# 显示出选中的时间  
def year_selected(year):  return '### Wildfires Across the US in {}'.format(year)  
# 绘制地图  
def plot_map(year_1):  year_df = df[df['FIRE_YEAR'] == year_1].copy()  plot = year_df.hvplot(  'LONGITUDE',   'LATITUDE',   geo=True,  kind='points',   rasterize=True,   cmap=cc.fire,   cnorm='eq_hist',    colorbar=True).opts(colorbar_position='bottom', xlabel='', ylabel='')  return map_tiles * plot  

我们将自定义的函数结合到一起来使用,代码如下

dashboard = pn.WidgetBox(  pn.Column(  pn.Row(pn.bind(year_selected, year), year),  pn.Row(pn.bind(plot_map, year)), align="start",  sizing_mode="stretch_width"))  
dashboard  

output

绘制柱状图

接下来我们来绘制几张简单的柱状图,首先是对不同的火灾等级进行分组统计并且绘制成柱状图,代码如下

def plot_class(year):  year_df = df[df['FIRE_YEAR'] == year].copy()  count_df = pd.DataFrame(year_df.groupby('FIRE_SIZE_CLASS').size(), columns=['Count'])  count_df['Fire Class'] = count_df.index  return count_df.hvplot.bar(x='Fire Class', y='Count', c='Fire Class', cmap='fire',   legend=False).opts(xlabel="Fire Size Class", ylabel="Number of Fires",  title="发生在{}的森林火灾,根据不同级别来区分".format(year))  
plot_class(2006)  

output

当然我们也可以绘制将柱状图绘制成是水平方向的,例如我们想要探究一下不同原因造成的火灾的持续的时间有多长,代码如下

def plot_cause_duration(year):  year_df = df[df['FIRE_YEAR'] == year].copy()  caused_df = pd.DataFrame(year_df.groupby('STAT_CAUSE_DESCR')[['BURN_TIME']].mean().sort_values('BURN_TIME'))  caused_df['Cause'] = caused_df.index  return caused_df.hvplot.barh(x='Cause', y='BURN_TIME',   c='Cause', cmap='fire_r', legend=False).opts(  ylabel="Duration (Days)",  title="发生在{}年由不同原因造成的森林火灾".format(year))  
plot_cause_duration(2010)  

output

以及我们想要看一下不同原因所造成的火灾的数量,代码如下

def plot_cause_occur(year):  year_df = df[df['FIRE_YEAR'] == year].copy()  caused_df = pd.DataFrame(year_df.groupby('STAT_CAUSE_DESCR').size(), columns=['Count']).sort_values('Count')  caused_df['Cause'] = caused_df.index  return caused_df.hvplot.barh(x='Cause', y='Count',   c='Cause', cmap='fire_r',   legend=False).opts(ylabel="Occurrence",  title="发生在{}年由不同原因造成的森林火灾".format(year))  
plot_cause_occur(2010)  

output

可视化大屏的制作

最后我们将上面绘制出来的图标拼凑到一起,做成可视化大屏,代码如下

plots_box = pn.WidgetBox(pn.Column(pn.Row(pn.bind(year_selected, year), year),  pn.Row(pn.bind(plot_map, year), pn.bind(plot_class, year)) ,  pn.Row(pn.bind(plot_cause_occur, year), pn.bind(plot_cause_duration, year)), align="start",  width=800, sizing_mode="stretch_width"))  
dashboard = pn.Row(plots_box, sizing_mode="stretch_width")  
dashboard  

output

相关文章:

【可视化实战】Python 绘制出来的数据大屏真的太惊艳了

今天我们在进行一个Python数据可视化的实战练习,用到的模块叫做Panel,我们通过调用此模块来绘制动态可交互的图表以及数据大屏的制作。 而本地需要用到的数据集,可在kaggle上面获取 https://www.kaggle.com/datasets/rtatman/188-million-us…...

Obsidium一键编码作业,Obsidia惊人属性

Obsidium一键编码作业,Obsidia惊人属性 每个区域都包含几个可定制的功能,允许用户确定如何完全执行应用程序的安全性。Obsidia的功能区允许用户存储任何调整或一键编码作业。 Obsidia惊人属性: 代码虚拟化:代码虚拟化允许您转换程序代码的特定…...

约束优化:约束优化的三种序列无约束优化方法

文章目录约束优化:约束优化的三种序列无约束优化方法外点罚函数法L2-罚函数法:非精确算法对于等式约束对于不等式约束L1-罚函数法:精确算法内点罚函数法:障碍函数法等式约束优化问题的拉格朗日函数法:Uzawas Method fo…...

RocketMQ快速入门:消息发送、延迟消息、消费重试

一起学编程,让生活更随和! 如果你觉得是个同道中人,欢迎关注博主gzh:【随和的皮蛋桑】。 专注于Java基础、进阶、面试以及计算机基础知识分享🐳。偶尔认知思考、日常水文🐌。 目录1、RocketMQ消息结构1.1…...

FANUC机器人通过KAREL程序实现与PLC位置坐标通信的具体方法示例

FANUC机器人通过KAREL程序实现与PLC位置坐标通信的具体方法示例 在通信IO点位数量足够的情况下,可以使用机器人的IO点传输位置数据,这里以传输机器人的实时位置为例进行说明。 基本流程如下图所示: 基本步骤可参考如下: 首先确认机器人控制柜已经安装了总线通信软件(例如…...

[蓝桥杯 2015 省 B] 移动距离

蓝桥杯 2015 年省赛 B 组 H 题题目描述X 星球居民小区的楼房全是一样的,并且按矩阵样式排列。其楼房的编号为 1,2,3,⋯ 。当排满一行时,从下一行相邻的楼往反方向排号。比如:当小区排号宽度为 6 时,开始情形如下:我们的…...

Pandas库入门仅需10分钟

数据处理的时候经常性需要整理出表格,在这里介绍pandas常见使用,目录如下: 数据结构导入导出文件对数据进行操作 – 增加数据(创建数据) – 删除数据 – 改动数据 – 查找数据 – 常用操作(转置&#xff0…...

python的socket通信中,如何设置可以让两台主机通过外网访问?

要让两台主机通过外网进行Socket通信,需要在网络设置和代码实现两个方面进行相应的配置。下面是具体的步骤: 确认网络环境:首先要确保两台主机都能够通过外网访问。可以通过ping命令或者telnet命令来测试两台主机之间是否可以互相访问。 确定…...

检测数据的方法(回顾)

检测数据类型的4种方法typeofinstanceofconstructor{}.toString.call() 检测数据类型的4种方法 typeof 定义 用来检测数据类型的运算符 返回一个字符串,表示操作值的数据类型(7种) number,string,boolean,object,u…...

比特数据结构与算法(第三章_上)栈的概念和实现(力扣:20. 有效的括号)

一、栈(stack)栈的概念:① 栈是一种特殊的线性表,它只允许在固定的一端进行插入和删除元素的操作。② 进行数据插入的删除和操作的一端,称为栈顶 。另一端则称为 栈底 。③ 栈中的元素遵守后进先出的原则,即…...

JVM13 类的生命周期

1. 概述 在 Java 中数据类型分为基本数据类型和引用数据类型。基本数据类型由虚拟机预先定义,引用数据类型则需要进行类的加载。 按照 Java 虚拟机规范,从 class 文件到加载到内存中的类,到类卸载出内存为止,它的整个生命周期包…...

Docker网络模式解析

目录 前言 一、常用基本命令 (一)查看网络 (二)创建网络 (三)查看网络源数据 (四)删除网络 二、网络模式 (一)总体介绍 (二&#xff09…...

游山城重庆

山城楼梯多,路都是上坡。 为了赶早上8点从成都到重庆的动车,凌晨5点半就爬起床来,由于昨天喝了咖啡,所以我将尽3点才睡觉,这意味着我只睡了2个多小时。起来简单休息之后,和朋友协商好时间就一起出门了。 …...

Vuex的创建和简单使用

Vuex 1.简介 1.1简介 1.框框里面才是Vuex state:状态数据action:处理异步mutations:处理同步,视图可以同步进行渲染1.2项目创建 1.vue create 名称 2.运行后 3.下载vuex。采用的是基于vue2的版本。 npm install vuex3 --save 4.vu…...

Arduino IDE搭建Heltec开发板开发环境

Arduino IDE搭建Heltec开发板开发环境Heltec开发板开发环境下载与搭建Arduino IDE下载与安装搭建Heltec开发板的开发环境添加package URL方法通过Git的方法安装离线安装Heltec开发板开发环境下载与搭建 Arduino IDE下载与安装 Heltec的ESP系列和大部分的LoRa系列开发板都是用A…...

Using the GNU Compiler Collection 目录翻译

文章目录Introduction1 Programming Languages Supported by GCC2 Language Standards Supported by GCC2.1 C Language3 GCC Command Options3.1 Option Summary4 C Implementation-Defined Behavior6 Extensions to the C Language Family9 Binary Compatibility其他工具10 g…...

使用 OpenCV for Android 进行图像特征检测

android 开发人员,可能熟悉使用activities, fragments, intents以及最重要的一系列开源依赖库。但是,注入需要本机功能的依赖关系(如计算机视觉框架)并不像在 gradle 文件中直接添加实现语句那样简单!今天,将专注于使用 OpenCV 库…...

chatGPT笔记

文章目录 一、GPT之技术演进时间线二、chatGPT中的语言模型instructGPT跟传统语言LM模型最大不同点是什么?三、instructGPT跟GPT-3的网络结构是否一样四、GPT和BERT有啥区别五、chatGPT的训练过程是怎样的?六、GPT3在算数方面的能力七、GPT相比于bert的优点是什么八、元学习(…...

这么好的政策和创新基地,年轻人有梦想你就来

周末有空去参观了下一个朋友办的公司。位置和环境真不错,且租金低的离谱,半年租金才2000元,且提供4个工位。这个创新基地真不赖啊,国家鼓励创新创业,助力年轻人实现梦想。场地有办公区,休息区应有尽有&…...

【Kubernetes】【十九】安全认证

第九章 安全认证 本章节主要介绍Kubernetes的安全认证机制。 访问控制概述 ​ Kubernetes作为一个分布式集群的管理工具,保证集群的安全性是其一个重要的任务。所谓的安全性其实就是保证对Kubernetes的各种客户端进行认证和鉴权操作。 客户端 在Kubernetes集群…...

JavaSec-RCE

简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性&#xff0c…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...

Python Einops库:深度学习中的张量操作革命

Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

OCR MLLM Evaluation

为什么需要评测体系&#xff1f;——背景与矛盾 ​​ 能干的事&#xff1a;​​ 看清楚发票、身份证上的字&#xff08;准确率>90%&#xff09;&#xff0c;速度飞快&#xff08;眨眼间完成&#xff09;。​​干不了的事&#xff1a;​​ 碰到复杂表格&#xff08;合并单元…...

大数据治理的常见方式

大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法&#xff0c;以下是几种常见的治理方式&#xff1a; 1. 数据质量管理 核心方法&#xff1a; 数据校验&#xff1a;建立数据校验规则&#xff08;格式、范围、一致性等&#xff09;数据清洗&…...