【可视化实战】Python 绘制出来的数据大屏真的太惊艳了
今天我们在进行一个Python数据可视化的实战练习,用到的模块叫做Panel,我们通过调用此模块来绘制动态可交互的图表以及数据大屏的制作。
而本地需要用到的数据集,可在kaggle上面获取 https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires,如果无法访问kaggle,可以找我获取数据集。
导入模块和读取数据
那么首先我们先导入后面会用到的模块,代码如下
# 数据库
import sqlite3
# 数据处理
import numpy as np
import pandas as pd
# 数据大屏
import holoviews as hv
import colorcet as cc
import panel as pn
from holoviews.element.tiles import EsriImagery
from datashader.utils import lnglat_to_meters
import hvplot.pandas
hv.extension('bokeh')
技术交流
技术要学会分享、交流,不建议闭门造车。一个人走的很快、一堆人可以走的更远。
好的技术文章离不开粉丝的分享、推荐,资料干货、资料分享、数据、ChatGPT 技术交流提升,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。
方式①、添加微信号:pythoner666,备注:来自CSDN +备注来意
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群
那么这回的数据集的背景我们这里简单的做个介绍,是涉及到1992年到2015年美国境内发生的森林火灾的分布情况,那么这里就有涉及到火灾发生的位置,也就是经纬度坐标,由于数据集是放在sqlite数据库当中,因此数据集的导入也会用到Python当中的sqlite3这个模块
# 连接数据库
conn = sqlite3.connect('./FPA_FOD_20170508.sqlite')
# 读取出我们需要的字段下面的数据
df = pd.read_sql_query("SELECT LATITUDE, LONGITUDE, STAT_CAUSE_DESCR, FIRE_SIZE, FIRE_SIZE_CLASS, DISCOVERY_DATE, CONT_DATE, STATE, FIRE_YEAR FROM fires", conn)
# 删除掉阿拉斯加等其他地方的数据
df = df.loc[(df.loc[:,'STATE']!='AK') & (df.loc[:,'STATE']!='HI') & (df.loc[:,'STATE']!='PR')]
# 计算大火燃烧的时间
df['BURN_TIME'] = df['CONT_DATE'] - df['DISCOVERY_DATE']
df.head()
output

绘制地图
接下来我们来绘制一下全美各个地区发生火灾的次数,将历年发生的火灾都做一个汇总,代码如下
map_tiles = EsriImagery().opts(alpha=0.5, width=700, height=480, bgcolor='black')
plot = df.hvplot( 'LONGITUDE', 'LATITUDE', geo=True, kind='points', rasterize=True, cmap=cc.fire, cnorm='eq_hist', colorbar=True).opts(colorbar_position='bottom', xlabel='', ylabel='')
map_tiles * plot
output

那么涉及到绘制地图,这里就需要依赖其他的模块了,例如Shapely、Cartopy以及Pillow等模块,安装起来会稍显复杂,大家可以上网去查阅一下具体的步骤,那么从上面的图表中我们可以看到加州以及佛罗里达州等地发生火灾的次数较多,颜色也就比较深。
要是我们要是想要给图表添加一个时间轴,通过拖拽时间轴来不断调整图表当中数据的变化,就可以这么来做,代码如下
# 绘制时间轴
year = pn.widgets.IntSlider(name='Year Slider', width=300, start=1992, end=2015, value=(1993), step=1,value_throttled=(1993))
# 显示出选中的时间
def year_selected(year): return '### Wildfires Across the US in {}'.format(year)
# 绘制地图
def plot_map(year_1): year_df = df[df['FIRE_YEAR'] == year_1].copy() plot = year_df.hvplot( 'LONGITUDE', 'LATITUDE', geo=True, kind='points', rasterize=True, cmap=cc.fire, cnorm='eq_hist', colorbar=True).opts(colorbar_position='bottom', xlabel='', ylabel='') return map_tiles * plot
我们将自定义的函数结合到一起来使用,代码如下
dashboard = pn.WidgetBox( pn.Column( pn.Row(pn.bind(year_selected, year), year), pn.Row(pn.bind(plot_map, year)), align="start", sizing_mode="stretch_width"))
dashboard
output

绘制柱状图
接下来我们来绘制几张简单的柱状图,首先是对不同的火灾等级进行分组统计并且绘制成柱状图,代码如下
def plot_class(year): year_df = df[df['FIRE_YEAR'] == year].copy() count_df = pd.DataFrame(year_df.groupby('FIRE_SIZE_CLASS').size(), columns=['Count']) count_df['Fire Class'] = count_df.index return count_df.hvplot.bar(x='Fire Class', y='Count', c='Fire Class', cmap='fire', legend=False).opts(xlabel="Fire Size Class", ylabel="Number of Fires", title="发生在{}的森林火灾,根据不同级别来区分".format(year))
plot_class(2006)
output

当然我们也可以绘制将柱状图绘制成是水平方向的,例如我们想要探究一下不同原因造成的火灾的持续的时间有多长,代码如下
def plot_cause_duration(year): year_df = df[df['FIRE_YEAR'] == year].copy() caused_df = pd.DataFrame(year_df.groupby('STAT_CAUSE_DESCR')[['BURN_TIME']].mean().sort_values('BURN_TIME')) caused_df['Cause'] = caused_df.index return caused_df.hvplot.barh(x='Cause', y='BURN_TIME', c='Cause', cmap='fire_r', legend=False).opts( ylabel="Duration (Days)", title="发生在{}年由不同原因造成的森林火灾".format(year))
plot_cause_duration(2010)
output

以及我们想要看一下不同原因所造成的火灾的数量,代码如下
def plot_cause_occur(year): year_df = df[df['FIRE_YEAR'] == year].copy() caused_df = pd.DataFrame(year_df.groupby('STAT_CAUSE_DESCR').size(), columns=['Count']).sort_values('Count') caused_df['Cause'] = caused_df.index return caused_df.hvplot.barh(x='Cause', y='Count', c='Cause', cmap='fire_r', legend=False).opts(ylabel="Occurrence", title="发生在{}年由不同原因造成的森林火灾".format(year))
plot_cause_occur(2010)
output

可视化大屏的制作
最后我们将上面绘制出来的图标拼凑到一起,做成可视化大屏,代码如下
plots_box = pn.WidgetBox(pn.Column(pn.Row(pn.bind(year_selected, year), year), pn.Row(pn.bind(plot_map, year), pn.bind(plot_class, year)) , pn.Row(pn.bind(plot_cause_occur, year), pn.bind(plot_cause_duration, year)), align="start", width=800, sizing_mode="stretch_width"))
dashboard = pn.Row(plots_box, sizing_mode="stretch_width")
dashboard
output

相关文章:
【可视化实战】Python 绘制出来的数据大屏真的太惊艳了
今天我们在进行一个Python数据可视化的实战练习,用到的模块叫做Panel,我们通过调用此模块来绘制动态可交互的图表以及数据大屏的制作。 而本地需要用到的数据集,可在kaggle上面获取 https://www.kaggle.com/datasets/rtatman/188-million-us…...
Obsidium一键编码作业,Obsidia惊人属性
Obsidium一键编码作业,Obsidia惊人属性 每个区域都包含几个可定制的功能,允许用户确定如何完全执行应用程序的安全性。Obsidia的功能区允许用户存储任何调整或一键编码作业。 Obsidia惊人属性: 代码虚拟化:代码虚拟化允许您转换程序代码的特定…...
约束优化:约束优化的三种序列无约束优化方法
文章目录约束优化:约束优化的三种序列无约束优化方法外点罚函数法L2-罚函数法:非精确算法对于等式约束对于不等式约束L1-罚函数法:精确算法内点罚函数法:障碍函数法等式约束优化问题的拉格朗日函数法:Uzawas Method fo…...
RocketMQ快速入门:消息发送、延迟消息、消费重试
一起学编程,让生活更随和! 如果你觉得是个同道中人,欢迎关注博主gzh:【随和的皮蛋桑】。 专注于Java基础、进阶、面试以及计算机基础知识分享🐳。偶尔认知思考、日常水文🐌。 目录1、RocketMQ消息结构1.1…...
FANUC机器人通过KAREL程序实现与PLC位置坐标通信的具体方法示例
FANUC机器人通过KAREL程序实现与PLC位置坐标通信的具体方法示例 在通信IO点位数量足够的情况下,可以使用机器人的IO点传输位置数据,这里以传输机器人的实时位置为例进行说明。 基本流程如下图所示: 基本步骤可参考如下: 首先确认机器人控制柜已经安装了总线通信软件(例如…...
[蓝桥杯 2015 省 B] 移动距离
蓝桥杯 2015 年省赛 B 组 H 题题目描述X 星球居民小区的楼房全是一样的,并且按矩阵样式排列。其楼房的编号为 1,2,3,⋯ 。当排满一行时,从下一行相邻的楼往反方向排号。比如:当小区排号宽度为 6 时,开始情形如下:我们的…...
Pandas库入门仅需10分钟
数据处理的时候经常性需要整理出表格,在这里介绍pandas常见使用,目录如下: 数据结构导入导出文件对数据进行操作 – 增加数据(创建数据) – 删除数据 – 改动数据 – 查找数据 – 常用操作(转置࿰…...
python的socket通信中,如何设置可以让两台主机通过外网访问?
要让两台主机通过外网进行Socket通信,需要在网络设置和代码实现两个方面进行相应的配置。下面是具体的步骤: 确认网络环境:首先要确保两台主机都能够通过外网访问。可以通过ping命令或者telnet命令来测试两台主机之间是否可以互相访问。 确定…...
检测数据的方法(回顾)
检测数据类型的4种方法typeofinstanceofconstructor{}.toString.call() 检测数据类型的4种方法 typeof 定义 用来检测数据类型的运算符 返回一个字符串,表示操作值的数据类型(7种) number,string,boolean,object,u…...
比特数据结构与算法(第三章_上)栈的概念和实现(力扣:20. 有效的括号)
一、栈(stack)栈的概念:① 栈是一种特殊的线性表,它只允许在固定的一端进行插入和删除元素的操作。② 进行数据插入的删除和操作的一端,称为栈顶 。另一端则称为 栈底 。③ 栈中的元素遵守后进先出的原则,即…...
JVM13 类的生命周期
1. 概述 在 Java 中数据类型分为基本数据类型和引用数据类型。基本数据类型由虚拟机预先定义,引用数据类型则需要进行类的加载。 按照 Java 虚拟机规范,从 class 文件到加载到内存中的类,到类卸载出内存为止,它的整个生命周期包…...
Docker网络模式解析
目录 前言 一、常用基本命令 (一)查看网络 (二)创建网络 (三)查看网络源数据 (四)删除网络 二、网络模式 (一)总体介绍 (二)…...
游山城重庆
山城楼梯多,路都是上坡。 为了赶早上8点从成都到重庆的动车,凌晨5点半就爬起床来,由于昨天喝了咖啡,所以我将尽3点才睡觉,这意味着我只睡了2个多小时。起来简单休息之后,和朋友协商好时间就一起出门了。 …...
Vuex的创建和简单使用
Vuex 1.简介 1.1简介 1.框框里面才是Vuex state:状态数据action:处理异步mutations:处理同步,视图可以同步进行渲染1.2项目创建 1.vue create 名称 2.运行后 3.下载vuex。采用的是基于vue2的版本。 npm install vuex3 --save 4.vu…...
Arduino IDE搭建Heltec开发板开发环境
Arduino IDE搭建Heltec开发板开发环境Heltec开发板开发环境下载与搭建Arduino IDE下载与安装搭建Heltec开发板的开发环境添加package URL方法通过Git的方法安装离线安装Heltec开发板开发环境下载与搭建 Arduino IDE下载与安装 Heltec的ESP系列和大部分的LoRa系列开发板都是用A…...
Using the GNU Compiler Collection 目录翻译
文章目录Introduction1 Programming Languages Supported by GCC2 Language Standards Supported by GCC2.1 C Language3 GCC Command Options3.1 Option Summary4 C Implementation-Defined Behavior6 Extensions to the C Language Family9 Binary Compatibility其他工具10 g…...
使用 OpenCV for Android 进行图像特征检测
android 开发人员,可能熟悉使用activities, fragments, intents以及最重要的一系列开源依赖库。但是,注入需要本机功能的依赖关系(如计算机视觉框架)并不像在 gradle 文件中直接添加实现语句那样简单!今天,将专注于使用 OpenCV 库…...
chatGPT笔记
文章目录 一、GPT之技术演进时间线二、chatGPT中的语言模型instructGPT跟传统语言LM模型最大不同点是什么?三、instructGPT跟GPT-3的网络结构是否一样四、GPT和BERT有啥区别五、chatGPT的训练过程是怎样的?六、GPT3在算数方面的能力七、GPT相比于bert的优点是什么八、元学习(…...
这么好的政策和创新基地,年轻人有梦想你就来
周末有空去参观了下一个朋友办的公司。位置和环境真不错,且租金低的离谱,半年租金才2000元,且提供4个工位。这个创新基地真不赖啊,国家鼓励创新创业,助力年轻人实现梦想。场地有办公区,休息区应有尽有&…...
【Kubernetes】【十九】安全认证
第九章 安全认证 本章节主要介绍Kubernetes的安全认证机制。 访问控制概述 Kubernetes作为一个分布式集群的管理工具,保证集群的安全性是其一个重要的任务。所谓的安全性其实就是保证对Kubernetes的各种客户端进行认证和鉴权操作。 客户端 在Kubernetes集群…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...
