当前位置: 首页 > news >正文

NVIDIA DLI 深度学习基础 答案 领取证书

最后一节作业是水果分类的任务,一共6类,使用之前学习的知识在代码段上进行填空。
在这里插入图片描述
加载ImageNet预训练的基础模型

from tensorflow import kerasbase_model = keras.applications.VGG16(weights="imagenet",input_shape=(224, 224, 3),include_top=False)

冻结基础模型

# Freeze base model
base_model.trainable = False

向模型添加新层

# Create inputs with correct shape
inputs = keras.Input(shape=(224, 224, 3))x = base_model(inputs, training=False)# Add pooling layer or flatten layer
x = keras.layers.GlobalAveragePooling2D()(x)# Add final dense layer
outputs = keras.layers.Dense(6, activation = 'softmax')(x)# Combine inputs and outputs to create model
model = keras.Model(inputs, outputs)
model.summary()

编译模型

model.compile(loss='categorical_crossentropy', optimizer='adam',  metrics=['accuracy'])

扩充数据

from tensorflow.keras.preprocessing.image import ImageDataGeneratordatagen_train = ImageDataGenerator(featurewise_center=True,  # set input mean to 0 over the datasetsamplewise_center=True,  # set each sample mean to 0rotation_range=10,  # randomly rotate images in the range (degrees, 0 to 180)zoom_range = 0.1, # Randomly zoom image width_shift_range=0.1,  # randomly shift images horizontally (fraction of total width)height_shift_range=0.1,  # randomly shift images vertically (fraction of total height)horizontal_flip=True,  # randomly flip imagesvertical_flip=False)
datagen_valid = ImageDataGenerator(featurewise_center=True,  # set input mean to 0 over the datasetsamplewise_center=True,  # set each sample mean to 0rotation_range=10,  # randomly rotate images in the range (degrees, 0 to 180)zoom_range = 0.1, # Randomly zoom image width_shift_range=0.1,  # randomly shift images horizontally (fraction of total width)height_shift_range=0.1,  # randomly shift images vertically (fraction of total height)horizontal_flip=True,  # randomly flip imagesvertical_flip=False)

加载数据集

# load and iterate training dataset
train_it = datagen_train.flow_from_directory("data/fruits/train", target_size=(224, 224), color_mode="rgb",class_mode="categorical",
)# load and iterate validation dataset
valid_it = datagen_valid.flow_from_directory("data/fruits/valid",                                     target_size=(224, 224), color_mode="rgb",class_mode="categorical",
)

训练模型
现在开始训练模型!将训练和测试数据集传递给fit函数,并设置所需的训练次数(epochs)


model.fit(train_it,validation_data=valid_it,steps_per_epoch=train_it.samples/train_it.batch_size,validation_steps=valid_it.samples/valid_it.batch_size,epochs=10)

在这里插入图片描述
其实到这里已经满足了评估需求,达到了92%以上的准确率
所以可以不进行微调的部分,直接运行后边的代码
在这里插入图片描述
就可以生成证书了

相关文章:

NVIDIA DLI 深度学习基础 答案 领取证书

最后一节作业是水果分类的任务,一共6类,使用之前学习的知识在代码段上进行填空。 加载ImageNet预训练的基础模型 from tensorflow import kerasbase_model keras.applications.VGG16(weights"imagenet",input_shape(224, 224, 3),include_t…...

axios模拟表单提交

axios默认是application/json方式提交,controller接收的时候必须以RequestBody的方式接收,有时候不太方便。如果axios以application/x-www-form-urlencoded方式提交数据,controller接收的时候只要保证名字应对类型正确即可。 前端代码&#…...

智安网络|探索物联网架构:构建连接物体与数字世界的桥梁

物联网是指通过互联网将各种物理设备与传感器连接在一起,实现相互通信和数据交换的网络系统。物联网架构是实现这一连接的基础和框架,它允许物体与数字世界之间的互动和协作。 一、物联网架构的概述 物联网架构是一种分层结构,它将物联网系…...

胡歌深夜发文:我对不起好多人

胡歌的微博又上了热搜。 8月29日01:18分,胡歌微博发文称:“我尽量保持冷静,我对不起好多人,我希望对得起这短暂的一生”,并配了一张自己胡子拉碴的图,右眼的伤疤清晰可见。 不少网友留言称“哥你又喝多了吗…...

C++二级题

数字放大 #include<iostream> #include<string.h> #include<stdio.h> #include<iomanip> #include<cmath> #include<bits/stdc.h> int a[2000][2000]; int b[2000]; char c[2000]; long long n; using namespace std; int main() {cin>…...

NetApp AFF A900:适用于数据中心的超级产品

NetApp AFF A900&#xff1a;适用于数据中心的超级产品 AFF A 系列中的 AFF A900 高端 NVMe 闪存存储功能强大、安全可靠、具有故障恢复能力&#xff0c;提供您为任务关键型企业级应用程序提供动力并保持数据始终可用且安全所需的一切。 产品功能与特性 AFF A900&#xff1a…...

入海排污口水质自动监测系统,助力把好入河入海“闸门”

随着经济社会的不断发展&#xff0c;污水的排放强度不断加大&#xff0c;大量的污水排入河流、湖泊和海洋中&#xff0c;造成了水体污染&#xff0c;严重影响着我国的用水安全、公众健康、经济发展与社会稳定。入河入海排污口是污染物进入河流和海洋的最后关口&#xff0c;也是…...

AUTOSAR知识点 之 ECUM (一):基础知识梳理(概念部分)

目录 1、概述 2、ECUM的工作状态 2.1、Startup状态 2.2、UP状态 2.3、RUN状态 2.4、SLEEP状态...

leetcode分类刷题:哈希表(Hash Table)(二、数组交集问题)

1、当需要快速判断某元素是否出现在序列中时&#xff0c;就要用到哈希表了。 2、本文针对的总结题型为给定两个及多个数组&#xff0c;求解它们的交集。接下来&#xff0c;按照由浅入深层层递进的顺序总结以下几道题目。 3、以下题目需要共同注意的是&#xff1a;对于两个数组&…...

[Mac软件]Adobe After Effects 2023 v23.5 中文苹果电脑版(支持M1)

After Effects是动画图形和视觉效果的行业标准。由运动设计师、平面设计师和视频编辑用于创建复杂的动画图形和视觉上吸引人的视频。 创建动画图形 使用预设样式为文本和图形添加动画效果&#xff0c;或逐帧调整它们。编辑、添加深度、制作动画或转换为可编辑的路径&#xff…...

范德波尔方程详细介绍与Python实现(附说明)

引言: 在研究真空管放大器的过程中,写下了一个振动微分方程。当时人们并没有混沌或是对初始条件敏感的概念。不过,当混沌理论有一定发展后,人们重新回顾这个方程时发现它其实是个混沌方程。当时,范德波尔在 Nature 杂志报告了基于这个微分方程的霓虹灯实验,发现当驱动信号…...

常用的GPT插件

0.简介 随着chatgpt爆火&#xff0c;这玩意并不对国内用户开放&#xff0c;如果想要使用的话还要需要进行翻墙以及国外手机号才能进行注册。 对于国内来说有很多国内免费的方法&#xff0c;这里就整理一下&#xff0c;方便大家开发 1. 网站类型 下面的网站无需注册即可免费…...

智慧校园用电安全解决方案

随着科技的不断发展&#xff0c;智慧校园建设逐渐成为了教育行业的一大趋势。在这个过程中&#xff0c;电力系统作为校园基础设施的重要组成部分&#xff0c;其安全、稳定、高效的运行显得尤为重要。下面小编来为大家介绍下智慧校园用电安全解决方案吧! 一、智慧校园电力系统现…...

【教程】DGL中的子图分区函数partition_graph讲解

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhang.cn] 目录 函数形式 函数作用 函数内容 函数入参 函数返参 使用示例 实际上官方的函数解释中就已经非常详细了。 函数形式 def partition_graph(g, graph_name, num_parts, out_path, num_hops1, part…...

关于layui table回显以及选择下一页时记住上一页数据的问题

代码如下 <div class"layui-form-item"><label class"layui-form-label">选择商品</label><div class"layui-input-inline"><input type"text" name"keyword" id"keyword" placehold…...

kafka消息系统实战

kafka是什么&#xff1f; 是一种高吞吐量的、分布式、发布、订阅、消息系统 1.导入maven坐标 <dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.4.1</version></dependency&…...

Kafka3.0.0版本——Leader故障处理细节原理

目录 一、服务器信息二、服务器基本信息及相关概念2.1、服务器基本信息2.2、LEO的概念2.3、HW的概念 三、Leader故障处理细节 一、服务器信息 三台服务器 原始服务器名称原始服务器ip节点centos7虚拟机1192.168.136.27broker0centos7虚拟机2192.168.136.28broker1centos7虚拟机…...

BI系统框架模型

一 技术架构 二 数据源 主数据 &#xff1a;组织|岗位|人员|大区|三大主数据&#xff08;客户、物料、供应商&#xff09;财务主数据&#xff08;科目|成本中心|利润中心|资产&#xff09;|工作中心|工艺路线 业务数据 &#xff1a;线索|业务机会|合同|订单|采购|生产|发…...

双向交错CCM图腾柱无桥单相PFC学习仿真与实现(3)硬件功能实现

前言 前面介绍了双向交错CCM图腾柱的系统设计仿真实现&#xff0c;仿真很理想 双向交错CCM图腾柱无桥单相PFC学习仿真与实现&#xff08;1&#xff09;系统问题分解_卡洛斯伊的博客-CSDN博客 然后又介绍了SOG锁相环仿真实现的原理 双向交错CCM图腾柱无桥单相PFC学习仿真与实…...

微软用 18 万行 Rust 重写了 Windows 内核

微软正在使用 Rust 编程语言重写其核心 Windows 库。 5 月 11 日——Azure 首席技术官 Mark Russinovich 表示&#xff0c;最新的 Windows 11 Insider Preview 版本是第一个包含内存安全编程语言 Rust 的版本。 “如果你参加了 Win11 Insider 环&#xff0c;你将在 Windows 内…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...