当前位置: 首页 > news >正文

NVIDIA DLI 深度学习基础 答案 领取证书

最后一节作业是水果分类的任务,一共6类,使用之前学习的知识在代码段上进行填空。
在这里插入图片描述
加载ImageNet预训练的基础模型

from tensorflow import kerasbase_model = keras.applications.VGG16(weights="imagenet",input_shape=(224, 224, 3),include_top=False)

冻结基础模型

# Freeze base model
base_model.trainable = False

向模型添加新层

# Create inputs with correct shape
inputs = keras.Input(shape=(224, 224, 3))x = base_model(inputs, training=False)# Add pooling layer or flatten layer
x = keras.layers.GlobalAveragePooling2D()(x)# Add final dense layer
outputs = keras.layers.Dense(6, activation = 'softmax')(x)# Combine inputs and outputs to create model
model = keras.Model(inputs, outputs)
model.summary()

编译模型

model.compile(loss='categorical_crossentropy', optimizer='adam',  metrics=['accuracy'])

扩充数据

from tensorflow.keras.preprocessing.image import ImageDataGeneratordatagen_train = ImageDataGenerator(featurewise_center=True,  # set input mean to 0 over the datasetsamplewise_center=True,  # set each sample mean to 0rotation_range=10,  # randomly rotate images in the range (degrees, 0 to 180)zoom_range = 0.1, # Randomly zoom image width_shift_range=0.1,  # randomly shift images horizontally (fraction of total width)height_shift_range=0.1,  # randomly shift images vertically (fraction of total height)horizontal_flip=True,  # randomly flip imagesvertical_flip=False)
datagen_valid = ImageDataGenerator(featurewise_center=True,  # set input mean to 0 over the datasetsamplewise_center=True,  # set each sample mean to 0rotation_range=10,  # randomly rotate images in the range (degrees, 0 to 180)zoom_range = 0.1, # Randomly zoom image width_shift_range=0.1,  # randomly shift images horizontally (fraction of total width)height_shift_range=0.1,  # randomly shift images vertically (fraction of total height)horizontal_flip=True,  # randomly flip imagesvertical_flip=False)

加载数据集

# load and iterate training dataset
train_it = datagen_train.flow_from_directory("data/fruits/train", target_size=(224, 224), color_mode="rgb",class_mode="categorical",
)# load and iterate validation dataset
valid_it = datagen_valid.flow_from_directory("data/fruits/valid",                                     target_size=(224, 224), color_mode="rgb",class_mode="categorical",
)

训练模型
现在开始训练模型!将训练和测试数据集传递给fit函数,并设置所需的训练次数(epochs)


model.fit(train_it,validation_data=valid_it,steps_per_epoch=train_it.samples/train_it.batch_size,validation_steps=valid_it.samples/valid_it.batch_size,epochs=10)

在这里插入图片描述
其实到这里已经满足了评估需求,达到了92%以上的准确率
所以可以不进行微调的部分,直接运行后边的代码
在这里插入图片描述
就可以生成证书了

相关文章:

NVIDIA DLI 深度学习基础 答案 领取证书

最后一节作业是水果分类的任务,一共6类,使用之前学习的知识在代码段上进行填空。 加载ImageNet预训练的基础模型 from tensorflow import kerasbase_model keras.applications.VGG16(weights"imagenet",input_shape(224, 224, 3),include_t…...

axios模拟表单提交

axios默认是application/json方式提交,controller接收的时候必须以RequestBody的方式接收,有时候不太方便。如果axios以application/x-www-form-urlencoded方式提交数据,controller接收的时候只要保证名字应对类型正确即可。 前端代码&#…...

智安网络|探索物联网架构:构建连接物体与数字世界的桥梁

物联网是指通过互联网将各种物理设备与传感器连接在一起,实现相互通信和数据交换的网络系统。物联网架构是实现这一连接的基础和框架,它允许物体与数字世界之间的互动和协作。 一、物联网架构的概述 物联网架构是一种分层结构,它将物联网系…...

胡歌深夜发文:我对不起好多人

胡歌的微博又上了热搜。 8月29日01:18分,胡歌微博发文称:“我尽量保持冷静,我对不起好多人,我希望对得起这短暂的一生”,并配了一张自己胡子拉碴的图,右眼的伤疤清晰可见。 不少网友留言称“哥你又喝多了吗…...

C++二级题

数字放大 #include<iostream> #include<string.h> #include<stdio.h> #include<iomanip> #include<cmath> #include<bits/stdc.h> int a[2000][2000]; int b[2000]; char c[2000]; long long n; using namespace std; int main() {cin>…...

NetApp AFF A900:适用于数据中心的超级产品

NetApp AFF A900&#xff1a;适用于数据中心的超级产品 AFF A 系列中的 AFF A900 高端 NVMe 闪存存储功能强大、安全可靠、具有故障恢复能力&#xff0c;提供您为任务关键型企业级应用程序提供动力并保持数据始终可用且安全所需的一切。 产品功能与特性 AFF A900&#xff1a…...

入海排污口水质自动监测系统,助力把好入河入海“闸门”

随着经济社会的不断发展&#xff0c;污水的排放强度不断加大&#xff0c;大量的污水排入河流、湖泊和海洋中&#xff0c;造成了水体污染&#xff0c;严重影响着我国的用水安全、公众健康、经济发展与社会稳定。入河入海排污口是污染物进入河流和海洋的最后关口&#xff0c;也是…...

AUTOSAR知识点 之 ECUM (一):基础知识梳理(概念部分)

目录 1、概述 2、ECUM的工作状态 2.1、Startup状态 2.2、UP状态 2.3、RUN状态 2.4、SLEEP状态...

leetcode分类刷题:哈希表(Hash Table)(二、数组交集问题)

1、当需要快速判断某元素是否出现在序列中时&#xff0c;就要用到哈希表了。 2、本文针对的总结题型为给定两个及多个数组&#xff0c;求解它们的交集。接下来&#xff0c;按照由浅入深层层递进的顺序总结以下几道题目。 3、以下题目需要共同注意的是&#xff1a;对于两个数组&…...

[Mac软件]Adobe After Effects 2023 v23.5 中文苹果电脑版(支持M1)

After Effects是动画图形和视觉效果的行业标准。由运动设计师、平面设计师和视频编辑用于创建复杂的动画图形和视觉上吸引人的视频。 创建动画图形 使用预设样式为文本和图形添加动画效果&#xff0c;或逐帧调整它们。编辑、添加深度、制作动画或转换为可编辑的路径&#xff…...

范德波尔方程详细介绍与Python实现(附说明)

引言: 在研究真空管放大器的过程中,写下了一个振动微分方程。当时人们并没有混沌或是对初始条件敏感的概念。不过,当混沌理论有一定发展后,人们重新回顾这个方程时发现它其实是个混沌方程。当时,范德波尔在 Nature 杂志报告了基于这个微分方程的霓虹灯实验,发现当驱动信号…...

常用的GPT插件

0.简介 随着chatgpt爆火&#xff0c;这玩意并不对国内用户开放&#xff0c;如果想要使用的话还要需要进行翻墙以及国外手机号才能进行注册。 对于国内来说有很多国内免费的方法&#xff0c;这里就整理一下&#xff0c;方便大家开发 1. 网站类型 下面的网站无需注册即可免费…...

智慧校园用电安全解决方案

随着科技的不断发展&#xff0c;智慧校园建设逐渐成为了教育行业的一大趋势。在这个过程中&#xff0c;电力系统作为校园基础设施的重要组成部分&#xff0c;其安全、稳定、高效的运行显得尤为重要。下面小编来为大家介绍下智慧校园用电安全解决方案吧! 一、智慧校园电力系统现…...

【教程】DGL中的子图分区函数partition_graph讲解

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhang.cn] 目录 函数形式 函数作用 函数内容 函数入参 函数返参 使用示例 实际上官方的函数解释中就已经非常详细了。 函数形式 def partition_graph(g, graph_name, num_parts, out_path, num_hops1, part…...

关于layui table回显以及选择下一页时记住上一页数据的问题

代码如下 <div class"layui-form-item"><label class"layui-form-label">选择商品</label><div class"layui-input-inline"><input type"text" name"keyword" id"keyword" placehold…...

kafka消息系统实战

kafka是什么&#xff1f; 是一种高吞吐量的、分布式、发布、订阅、消息系统 1.导入maven坐标 <dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.4.1</version></dependency&…...

Kafka3.0.0版本——Leader故障处理细节原理

目录 一、服务器信息二、服务器基本信息及相关概念2.1、服务器基本信息2.2、LEO的概念2.3、HW的概念 三、Leader故障处理细节 一、服务器信息 三台服务器 原始服务器名称原始服务器ip节点centos7虚拟机1192.168.136.27broker0centos7虚拟机2192.168.136.28broker1centos7虚拟机…...

BI系统框架模型

一 技术架构 二 数据源 主数据 &#xff1a;组织|岗位|人员|大区|三大主数据&#xff08;客户、物料、供应商&#xff09;财务主数据&#xff08;科目|成本中心|利润中心|资产&#xff09;|工作中心|工艺路线 业务数据 &#xff1a;线索|业务机会|合同|订单|采购|生产|发…...

双向交错CCM图腾柱无桥单相PFC学习仿真与实现(3)硬件功能实现

前言 前面介绍了双向交错CCM图腾柱的系统设计仿真实现&#xff0c;仿真很理想 双向交错CCM图腾柱无桥单相PFC学习仿真与实现&#xff08;1&#xff09;系统问题分解_卡洛斯伊的博客-CSDN博客 然后又介绍了SOG锁相环仿真实现的原理 双向交错CCM图腾柱无桥单相PFC学习仿真与实…...

微软用 18 万行 Rust 重写了 Windows 内核

微软正在使用 Rust 编程语言重写其核心 Windows 库。 5 月 11 日——Azure 首席技术官 Mark Russinovich 表示&#xff0c;最新的 Windows 11 Insider Preview 版本是第一个包含内存安全编程语言 Rust 的版本。 “如果你参加了 Win11 Insider 环&#xff0c;你将在 Windows 内…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落&#xff0c;一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延&#xff0c;滚滚浓烟弥漫开来&#xff0c;周围群众的生命财产安全受到严重威胁。就在这千钧一发之际&#xff0c;消防救援队伍迅速行动&#xff0c;而豪越科技消防一体化安全管控平台构建的消防“…...

PH热榜 | 2025-06-08

1. Thiings 标语&#xff1a;一套超过1900个免费AI生成的3D图标集合 介绍&#xff1a;Thiings是一个不断扩展的免费AI生成3D图标库&#xff0c;目前已有超过1900个图标。你可以按照主题浏览&#xff0c;生成自己的图标&#xff0c;或者下载整个图标集。所有图标都可以在个人或…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor

1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...

起重机起升机构的安全装置有哪些?

起重机起升机构的安全装置是保障吊装作业安全的关键部件&#xff0c;主要用于防止超载、失控、断绳等危险情况。以下是常见的安全装置及其功能和原理&#xff1a; 一、超载保护装置&#xff08;核心安全装置&#xff09; 1. 起重量限制器 功能&#xff1a;实时监测起升载荷&a…...

背包问题双雄:01 背包与完全背包详解(Java 实现)

一、背包问题概述 背包问题是动态规划领域的经典问题&#xff0c;其核心在于如何在有限容量的背包中选择物品&#xff0c;使得总价值最大化。根据物品选择规则的不同&#xff0c;主要分为两类&#xff1a; 01 背包&#xff1a;每件物品最多选 1 次&#xff08;选或不选&#…...

【记录坑点问题】IDEA运行:maven-resources-production:XX: OOM: Java heap space

问题&#xff1a;IDEA出现maven-resources-production:operation-service: java.lang.OutOfMemoryError: Java heap space 解决方案&#xff1a;将编译的堆内存增加一点 位置&#xff1a;设置setting-》构建菜单build-》编译器Complier...