当前位置: 首页 > news >正文

CUDA小白 - NPP(2) -图像处理-算数和逻辑操作(2)

cuda小白
原始API链接 NPP

GPU架构近些年也有不少的变化,具体的可以参考别的博主的介绍,都比较详细。还有一些cuda中的专有名词的含义,可以参考《详解CUDA的Context、Stream、Warp、SM、SP、Kernel、Block、Grid》

常见的NppStatus,可以看这里。

如有问题,请指出,谢谢

Logical Operations

逻辑操作主要就是与、或、异或、右移、左移,非等逻辑操作,同样还是分为两个大类,一个是基于单张图像和常数的,另外一个是基于多张图像的。

AndC

第一大类以AndC为例子,主要是就是比较图像与提供的constant(每个通道一个值)进行与操作之后的结果。

// 有无I的区别在于是否直接对图像进行操作
NppStatus nppiAndC_8u_C3R(const Npp8u *pSrc1,int nSrc1Step,const Npp8u aConstants[3],Npp8u *pDst,int nDstStep,NppiSize oSizeROI);
NppStatus nppiAndC_8u_C3IR(const Npp8u aConstants[3],Npp8u *pSrcDst,int nSrcDstStep,NppiSize oSizeROI);
code
#include <iostream>
#include <cuda_runtime.h>
#include <npp.h>
#include <opencv2/opencv.hpp>#define PRINT_VALUE(value) {  \std::cout << "[GPU] " << #value << " = " << value << std::endl; }#define CUDA_FREE(ptr) { if (ptr != nullptr) { cudaFree(ptr); ptr = nullptr; } }int main() {std::string directory = "../";// =============== load image ===============cv::Mat image = cv::Mat(500, 500, CV_8UC3, cv::Scalar(255, 255, 255));cv::Rect rc1 = cv::Rect(150, 150, 200, 200);cv::Rect rc2 = cv::Rect(200, 200, 200, 200);cv::Rect rc3 = cv::Rect(300, 0, 100, 200);cv::Rect rc4 = cv::Rect(0, 0, 200, 100);cv::Mat(200, 200, CV_8UC3, cv::Scalar(75, 75, 75)).copyTo(image(rc1));cv::Mat(200, 200, CV_8UC3, cv::Scalar(100, 100, 100)).copyTo(image(rc2));cv::Mat(200, 100, CV_8UC3, cv::Scalar(125, 125, 125)).copyTo(image(rc3));cv::Mat(100, 200, CV_8UC3, cv::Scalar(150, 150, 150)).copyTo(image(rc4));cv::imwrite(directory + "orin.jpg", image);int image_width = image.cols;int image_height = image.rows;int image_size = image_width * image_height * 3;std::cout << "Image info : image_width = " << image_width<< ", image_height = " << image_height << std::endl;// =============== malloc && cpy ===============uint8_t *in_ptr;cudaMalloc((void**)&in_ptr, image_size * sizeof(uint8_t));cudaMemcpy(in_ptr, image.data, image_size, cudaMemcpyHostToDevice);uint8_t *out_ptr, *out_ptr1;cudaMalloc((void**)&out_ptr, image_size * sizeof(uint8_t));cudaMalloc((void**)&out_ptr1, image_size * sizeof(uint8_t));NppiSize roi1, roi2;roi1.width = image_width;roi1.height = image_height;roi2.width = image_width / 2;roi2.height = image_height / 2;uint8_t constant[3] = { (uint8_t)100, (uint8_t)100, (uint8_t)100 };// nppiAdd_8u_C3RSfscv::Mat out_image = cv::Mat::zeros(image_height, image_width, CV_8UC3);cv::Mat out_image1 = cv::Mat::zeros(image_height, image_width, CV_8UC3);NppStatus status;status = nppiAndC_8u_C3R(in_ptr, image_width * 3, constant, out_ptr, image_width * 3, roi1);if (status != NPP_SUCCESS) {std::cout << "[GPU] ERROR nppiAndC_8u_C3R failed, status = " << status << std::endl;return false;}cudaMemcpy(out_image.data, out_ptr, image_size, cudaMemcpyDeviceToHost);cv::imwrite(directory + "and.jpg", out_image);status = nppiAndC_8u_C3R(in_ptr, image_width * 3, constant, out_ptr1, image_width * 3, roi2);if (status != NPP_SUCCESS) {std::cout << "[GPU] ERROR nppiAndC_8u_C3R failed, status = " << status << std::endl;return false;}cudaMemcpy(out_image1.data, out_ptr1, image_size, cudaMemcpyDeviceToHost);cv::imwrite(directory + "and_roi.jpg", out_image1);// freeCUDA_FREE(in_ptr)CUDA_FREE(out_ptr)CUDA_FREE(out_ptr1)
}
make
cmake_minimum_required(VERSION 3.20)
project(test)find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
file(GLOB CUDA_LIBS "/usr/local/cuda/lib64/*.so")add_executable(test test.cpp)
target_link_libraries(test${OpenCV_LIBS}${CUDA_LIBS}
)
result

请添加图片描述
注意点:

  1. 该函数是将图像的三个通道分别于Constant的值进行按位与的操作,测试的例子中分别使用了255,75, 100, 125, 150三种像素,与100与之后分别为100,4,4,100,100,4。
  2. 由于roi的存在,可以仅保存roi区域内的结果,也就是说输出的地址其可以仅申请roi的区域的大小。
And

针对两张图的操作,包含与、或、非、异或。

NppStatus nppiAnd_8u_C3R(const Npp8u *pSrc1,int nSrc1Step,const Npp8u *pSrc2,int nSrc2Step,Npp8u *pDst,int nDstStep,NppiSize oSizeROI);NppStatus nppiAnd_8u_C3IR(const Npp8u *pSrc,int nSrcStep,Npp8u *pSrcDst,int nSrcDstStep,NppiSize oSizeROI);
code
#include <iostream>
#include <cuda_runtime.h>
#include <npp.h>
#include <opencv2/opencv.hpp>#define PRINT_VALUE(value) {  \std::cout << "[GPU] " << #value << " = " << value << std::endl; }#define CUDA_FREE(ptr) { if (ptr != nullptr) { cudaFree(ptr); ptr = nullptr; } }int main() {std::string directory = "../";// =============== load image ===============cv::Mat image_dog = cv::imread(directory + "dog.png");int image_width = image_dog.cols;int image_height = image_dog.rows;int image_size = image_width * image_height * 3;cv::Mat image = cv::Mat(image_height, image_width, CV_8UC3, cv::Scalar(100, 125, 150));std::cout << "Image info : image_width = " << image_width<< ", image_height = " << image_height << std::endl;// =============== malloc && cpy ===============uint8_t *in_ptr, *mask;cudaMalloc((void**)&in_ptr, image_size * sizeof(uint8_t));cudaMalloc((void**)&mask, image_size * sizeof(uint8_t));cudaMemcpy(in_ptr, image_dog.data, image_size, cudaMemcpyHostToDevice);cudaMemcpy(mask, image.data, image_size, cudaMemcpyHostToDevice);uint8_t *out_ptr, *out_ptr1;cudaMalloc((void**)&out_ptr, image_size * sizeof(uint8_t));cudaMalloc((void**)&out_ptr1, image_size * sizeof(uint8_t));NppiSize roi1, roi2;roi1.width = image_width;roi1.height = image_height;roi2.width = image_width / 2;roi2.height = image_height / 2;// nppiAdd_8u_C3RSfscv::Mat out_image = cv::Mat::zeros(image_height, image_width, CV_8UC3);cv::Mat out_image1 = cv::Mat::zeros(image_height, image_width, CV_8UC3);NppStatus status;status = nppiAnd_8u_C3R(in_ptr, image_width * 3, mask, image_width * 3, out_ptr, image_width * 3, roi1);if (status != NPP_SUCCESS) {std::cout << "[GPU] ERROR nppiAnd_8u_C3R failed, status = " << status << std::endl;return false;}cudaMemcpy(out_image.data, out_ptr, image_size, cudaMemcpyDeviceToHost);cv::imwrite(directory + "and.jpg", out_image);status = nppiAnd_8u_C3R(in_ptr, image_width * 3, mask, image_width * 3, out_ptr1, image_width * 3, roi2);if (status != NPP_SUCCESS) {std::cout << "[GPU] ERROR nppiAnd_8u_C3R failed, status = " << status << std::endl;return false;}cudaMemcpy(out_image1.data, out_ptr1, image_size, cudaMemcpyDeviceToHost);cv::imwrite(directory + "and_roi.jpg", out_image1);// freeCUDA_FREE(in_ptr)CUDA_FREE(out_ptr)CUDA_FREE(out_ptr1)
}
make
cmake_minimum_required(VERSION 3.20)
project(test)find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
file(GLOB CUDA_LIBS "/usr/local/cuda/lib64/*.so")add_executable(test test.cpp)
target_link_libraries(test![请添加图片描述](https://img-blog.csdnimg.cn/ce7447a784744aa88e9818c5b8c7a5e6.png)${OpenCV_LIBS}${CUDA_LIBS}
)
result

请添加图片描述

Alpha Composition

主要功能是图像的合成(AlphaComp)以及图像的不透明度调整(AlphaPremulC)。

AlphaCompC

该接口主要完成的两张图像(单通道,三通道,四通道)的合成,主要是操作是根据NppiAlphaOp来完成一定的操作。

NppStatus nppiAlphaCompC_8u_C3R(const Npp8u *pSrc1,int nSrc1Step,Npp8u nAlpha1,const Npp8u *pSrc2,int nSrc2Step,Npp8u nAlpha2,Npp8u *pDst,int nDstStep,NppiSize oSizeROI,NppiAlphaOp eAlphaOp);

AlphaComp

该接口主要完成的两张单通道或者四通道的图像的合成。主要是操作是根据NppiAlphaOp来完成一定的操作。

NppStatus nppiAlphaComp_8u_AC1R(const Npp8u *pSrc1,int nSrc1Step,const Npp8u *pSrc2,int nSrc2Step,Npp8u *pDst,int nDstStep,NppiSize oSizeROI,NppiAlphaOp eAlphaOp);

与AlphaCompC的区别在于,AlphaCompC可以指定每个输入图像的比例来完成对应的Operation,而AlphaComp则是没有。

相关文章:

CUDA小白 - NPP(2) -图像处理-算数和逻辑操作(2)

cuda小白 原始API链接 NPP GPU架构近些年也有不少的变化&#xff0c;具体的可以参考别的博主的介绍&#xff0c;都比较详细。还有一些cuda中的专有名词的含义&#xff0c;可以参考《详解CUDA的Context、Stream、Warp、SM、SP、Kernel、Block、Grid》 常见的NppStatus&#xf…...

python+redis实现布隆过滤器(含redis5.0版本以上和5.0以下版本的两份代码)

布隆过滤器是一种空间效率极高的概率数据结构&#xff0c;用于测试一个元素是否是集合的成员。如果布隆过滤器返回 False&#xff0c;则元素绝对不在集合中。如果返回 True&#xff0c;则元素可能在集合中&#xff0c;但也可能是一个误报。布隆过滤器利用了多个不同的哈希函数对…...

SpringBoot Thymeleaf iText7 生成 PDF(2023/08/29)

SpringBoot Thymeleaf iText7 生成 PDF&#xff08;2023/08/29&#xff09; 文章目录 SpringBoot Thymeleaf iText7 生成 PDF&#xff08;2023/08/29&#xff09;1. 前言2. 技术思路3. 实现过程4. 测试 1. 前言 近期在项目种遇到了实时生成复杂 PDF 的需求&#xff0c;经过一番…...

【核磁共振成像】并行采集MRI

目录 一、并行成像二、SENSE重建三、SMASH重建四、灵敏度校准五、AUTO-SMASH和VD-AUTO-SMASH六、GRAPPA重建七、SPACE RIP重建算法八、PILS重建算法九、PRUNO重建算法十、UNFOLD算法 一、并行成像 并行MR成像(pMRI):相位阵列接受线圈不但各有自己专用的接受通道&#xff0c;而且…...

深度图相关评测网站

文章目录 1 单目/Stereo相关测评网站介绍12 单目/Stereo相关测评网站介绍23 单目/Stereo相关测评网站介绍3 1 单目/Stereo相关测评网站介绍1 https://vision.middlebury.edu/stereo/eval3/ 2 单目/Stereo相关测评网站介绍2 http://www.cvlibs.net/datasets/kitti/eval_stereo…...

本地部署 CodeLlama 并在 VSCode 中使用 CodeLlama

本地部署 CodeLlama 并在 VSCode 中使用 CodeLlama 1. CodeLlama 是什么2. CodeLlama Github 地址3. 下载 CodeLlama 模型4. 部署 CodeLlama5. 在 VSCode 中使用 CodeLlama6. 使用WSGI启动服务7. 创建 start.sh 启动脚本 1. CodeLlama 是什么 Code Llama 是一个基于 Llama 2 的…...

Agilent33220A任意波形发生器

20MHz正弦波和方波脉冲、斜披、三角波&#xff0c;噪声和直流波形14-bit,50MSa/s&#xff0c;64K点任意波形AM、FM、PM、FSK和PWM凋制线性和对数扫描及脉冲串模式10mVpp至10Vpp幅苗范围图形化界面可以对信号设置进行可视化验证通过USB、GPIB和LAN连接 性能优异的各种函数的波形…...

springboot第37集:kafka,mqtt,Netty,nginx,CentOS,Webpack

image.png binzookeeper-server-start.shconfigzookeeper.properties.png image.png image.png 消费 image.png image.png image.png image.png image.png image.png image.png image.png image.png Netty的优点有很多&#xff1a; API使用简单&#xff0c;学习成本低。功能强大…...

NVIDIA DLI 深度学习基础 答案 领取证书

最后一节作业是水果分类的任务&#xff0c;一共6类&#xff0c;使用之前学习的知识在代码段上进行填空。 加载ImageNet预训练的基础模型 from tensorflow import kerasbase_model keras.applications.VGG16(weights"imagenet",input_shape(224, 224, 3),include_t…...

axios模拟表单提交

axios默认是application/json方式提交&#xff0c;controller接收的时候必须以RequestBody的方式接收&#xff0c;有时候不太方便。如果axios以application/x-www-form-urlencoded方式提交数据&#xff0c;controller接收的时候只要保证名字应对类型正确即可。 前端代码&#…...

智安网络|探索物联网架构:构建连接物体与数字世界的桥梁

物联网是指通过互联网将各种物理设备与传感器连接在一起&#xff0c;实现相互通信和数据交换的网络系统。物联网架构是实现这一连接的基础和框架&#xff0c;它允许物体与数字世界之间的互动和协作。 一、物联网架构的概述 物联网架构是一种分层结构&#xff0c;它将物联网系…...

胡歌深夜发文:我对不起好多人

胡歌的微博又上了热搜。 8月29日01:18分&#xff0c;胡歌微博发文称&#xff1a;“我尽量保持冷静&#xff0c;我对不起好多人&#xff0c;我希望对得起这短暂的一生”&#xff0c;并配了一张自己胡子拉碴的图&#xff0c;右眼的伤疤清晰可见。 不少网友留言称“哥你又喝多了吗…...

C++二级题

数字放大 #include<iostream> #include<string.h> #include<stdio.h> #include<iomanip> #include<cmath> #include<bits/stdc.h> int a[2000][2000]; int b[2000]; char c[2000]; long long n; using namespace std; int main() {cin>…...

NetApp AFF A900:适用于数据中心的超级产品

NetApp AFF A900&#xff1a;适用于数据中心的超级产品 AFF A 系列中的 AFF A900 高端 NVMe 闪存存储功能强大、安全可靠、具有故障恢复能力&#xff0c;提供您为任务关键型企业级应用程序提供动力并保持数据始终可用且安全所需的一切。 产品功能与特性 AFF A900&#xff1a…...

入海排污口水质自动监测系统,助力把好入河入海“闸门”

随着经济社会的不断发展&#xff0c;污水的排放强度不断加大&#xff0c;大量的污水排入河流、湖泊和海洋中&#xff0c;造成了水体污染&#xff0c;严重影响着我国的用水安全、公众健康、经济发展与社会稳定。入河入海排污口是污染物进入河流和海洋的最后关口&#xff0c;也是…...

AUTOSAR知识点 之 ECUM (一):基础知识梳理(概念部分)

目录 1、概述 2、ECUM的工作状态 2.1、Startup状态 2.2、UP状态 2.3、RUN状态 2.4、SLEEP状态...

leetcode分类刷题:哈希表(Hash Table)(二、数组交集问题)

1、当需要快速判断某元素是否出现在序列中时&#xff0c;就要用到哈希表了。 2、本文针对的总结题型为给定两个及多个数组&#xff0c;求解它们的交集。接下来&#xff0c;按照由浅入深层层递进的顺序总结以下几道题目。 3、以下题目需要共同注意的是&#xff1a;对于两个数组&…...

[Mac软件]Adobe After Effects 2023 v23.5 中文苹果电脑版(支持M1)

After Effects是动画图形和视觉效果的行业标准。由运动设计师、平面设计师和视频编辑用于创建复杂的动画图形和视觉上吸引人的视频。 创建动画图形 使用预设样式为文本和图形添加动画效果&#xff0c;或逐帧调整它们。编辑、添加深度、制作动画或转换为可编辑的路径&#xff…...

范德波尔方程详细介绍与Python实现(附说明)

引言: 在研究真空管放大器的过程中,写下了一个振动微分方程。当时人们并没有混沌或是对初始条件敏感的概念。不过,当混沌理论有一定发展后,人们重新回顾这个方程时发现它其实是个混沌方程。当时,范德波尔在 Nature 杂志报告了基于这个微分方程的霓虹灯实验,发现当驱动信号…...

常用的GPT插件

0.简介 随着chatgpt爆火&#xff0c;这玩意并不对国内用户开放&#xff0c;如果想要使用的话还要需要进行翻墙以及国外手机号才能进行注册。 对于国内来说有很多国内免费的方法&#xff0c;这里就整理一下&#xff0c;方便大家开发 1. 网站类型 下面的网站无需注册即可免费…...

智慧校园用电安全解决方案

随着科技的不断发展&#xff0c;智慧校园建设逐渐成为了教育行业的一大趋势。在这个过程中&#xff0c;电力系统作为校园基础设施的重要组成部分&#xff0c;其安全、稳定、高效的运行显得尤为重要。下面小编来为大家介绍下智慧校园用电安全解决方案吧! 一、智慧校园电力系统现…...

【教程】DGL中的子图分区函数partition_graph讲解

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhang.cn] 目录 函数形式 函数作用 函数内容 函数入参 函数返参 使用示例 实际上官方的函数解释中就已经非常详细了。 函数形式 def partition_graph(g, graph_name, num_parts, out_path, num_hops1, part…...

关于layui table回显以及选择下一页时记住上一页数据的问题

代码如下 <div class"layui-form-item"><label class"layui-form-label">选择商品</label><div class"layui-input-inline"><input type"text" name"keyword" id"keyword" placehold…...

kafka消息系统实战

kafka是什么&#xff1f; 是一种高吞吐量的、分布式、发布、订阅、消息系统 1.导入maven坐标 <dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.4.1</version></dependency&…...

Kafka3.0.0版本——Leader故障处理细节原理

目录 一、服务器信息二、服务器基本信息及相关概念2.1、服务器基本信息2.2、LEO的概念2.3、HW的概念 三、Leader故障处理细节 一、服务器信息 三台服务器 原始服务器名称原始服务器ip节点centos7虚拟机1192.168.136.27broker0centos7虚拟机2192.168.136.28broker1centos7虚拟机…...

BI系统框架模型

一 技术架构 二 数据源 主数据 &#xff1a;组织|岗位|人员|大区|三大主数据&#xff08;客户、物料、供应商&#xff09;财务主数据&#xff08;科目|成本中心|利润中心|资产&#xff09;|工作中心|工艺路线 业务数据 &#xff1a;线索|业务机会|合同|订单|采购|生产|发…...

双向交错CCM图腾柱无桥单相PFC学习仿真与实现(3)硬件功能实现

前言 前面介绍了双向交错CCM图腾柱的系统设计仿真实现&#xff0c;仿真很理想 双向交错CCM图腾柱无桥单相PFC学习仿真与实现&#xff08;1&#xff09;系统问题分解_卡洛斯伊的博客-CSDN博客 然后又介绍了SOG锁相环仿真实现的原理 双向交错CCM图腾柱无桥单相PFC学习仿真与实…...

微软用 18 万行 Rust 重写了 Windows 内核

微软正在使用 Rust 编程语言重写其核心 Windows 库。 5 月 11 日——Azure 首席技术官 Mark Russinovich 表示&#xff0c;最新的 Windows 11 Insider Preview 版本是第一个包含内存安全编程语言 Rust 的版本。 “如果你参加了 Win11 Insider 环&#xff0c;你将在 Windows 内…...

word 调整列表缩进

word 调整列表缩进的一种方法&#xff0c;在试了其他方法无效后&#xff0c;按下图所示顺序处理&#xff0c;编号和文字之间的空白就没那么大了。 即右键word上方样式->点击修改格式->定义新编号格式->字体->取消勾选 “……对齐到网格”->确定...

nginx学习

一、nginx常用版本 Nginx开源版&#xff1a; http://nginx.org/ nginx plus商业版本&#xff08;好像功能支持更多&#xff09; https://www.nginx.com/ openresty &#xff08;免费&#xff0c;用的也是这个&#xff09; https://openresty.org/cn/ Tengine https://tengine.…...