C语言 - 结构体、结构体数组、结构体指针和结构体嵌套
结构体的意义
问题:学籍管理需要每个学生的下列数据:学号、姓名、性别、年龄、分数,请用 C 语言程序存储并处理一组学生的学籍。
单个学生学籍的数据结构:
- 学号(num): int 型
- 姓名(name) :char [ ] 型
- 性别(sex):char 型
- 年龄(age):int 型
- 分数(score):float 型
思考:如果有多个学生,该怎么定义,已学数据类型无法解决(已学的数据类型需要定义好多变量,不友好)。
概述
- 正式:
结构体是由一批数据组合而成的结构型数据。组成结构型数据的每个数据被称为结构型数据的 “成员” ,其描述了一块内存区间的大小及解释意义。 - 通俗:
结构体属于用户自定义的数据类型,允许用户存储不同的数据类型。
在C语言中,定义结构体的语法格式如下:
struct 结构体名 {类型 成员1;类型 成员2;// ...
};
其中,结构体名是您自定义的结构体类型名称,可以根据需求进行命名。成员1、成员2等表示结构体的成员变量,每个成员都有自己的类型和名称。
定义结构体后,可以使用该结构体类型创建结构体变量,并访问结构体的成员。访问结构体成员的语法是使用结构体变量名后跟成员名,中间使用点.进行连接。
结构体的使用:
-
struct 结构体名 变量名
-
struct 结构体名 变量名 = {成员1值,成员2值…}
-
定义结构体时顺便创建变量(这时候创建几个变量都可以,中间用逗号隔开,直接在创建的时候赋值也可以,例如:)
struct student {int num; //学号char name[16]; //姓名float score; //成绩 }stu5 = {1002,"lihua",89},stu6; -
如果只想给一部分数据赋值的话:
struct 结构体名 变量名 = { .name = "cuiyi", .num = 111, };
下面是一个更完整的示例:
#include <stdio.h>// 定义一个结构体
struct Person {char name[50];int age;float height;
};int main() {// 创建一个结构体变量struct Person person1;// 访问结构体的成员strcpy(person1.name, "John");person1.age = 25;person1.height = 1.75;// 输出结构体的成员printf("Name: %s\n", person1.name);printf("Age: %d\n", person1.age);printf("Height: %.2f\n", person1.height);return 0;
}
在上述示例中,我们定义了一个名为Person的结构体,它包含了姓名、年龄和身高三个成员变量。然后,我们创建了一个名为person1的结构体变量,并给它的成员赋值。最后,使用printf函数输出结构体的成员值。
结构体数组
- 作用:将自定义的结构体放入数组中方便维护
- 语法:
struct 结构体名 数组名[元素个数] = {{}, {}, …{}}
示例:
#include<stdio.h>struct stu
{char name[16];int age;float score;
}s[3];int main()
{struct stu s[3] = {{"zhangsan",18,500},{"lisi",18,530},{"wangwu",18,550}};int i;for (i = 0; i < 3; i++){printf("name=%s, age=%d, score=%f\n",s[i].name,s[i].age,s[i].score);}return 0;
}
结构体指针
- 作用:通过指针访问结构体的成员
- 语法:
struct 结构体名 *指针名; - 利用操作符->可以通过结构体指针访问结构体属性(比如s.name 有一个指针 ps 指向 s ,那么可以用 ps->name 代替 s.name)
示例:
结构体数组和结构体指针
#include<stdio.h>struct stu
{char name[16];int age;float score;
}s[3];int main()
{struct stu s[3] = {{"zhangsan",18,500},{"lisi",18,530},{"wangwu",18,550}};struct stu *ps = s;//定义一个指针指向结构体数组int i;for (i = 0; i < 3; i++){printf("name=%s, age=%d, score=%f\n",(*(ps+i)).name,(*(ps+i)).age,(*(ps+i)).score);}return 0;
}
在上面的代码中,一定要记得 (*(ps+i)) 才是一个大括号里面的值,这样才能 .name .age .score 。
结构体嵌套结构体
- 含义
结构体中的成员可以是另一个结构体 - 语法
struct 结构体名
{struct 结构体名 成员名;
};
示例:
#include <stdio.h>
#include <string.h>struct person
{char name[16];int age;char sex;
};struct student
{struct person stu; float score;
};struct teacher
{struct person tea;char phone[12];
};int main(int argc, const char *argv[])
{struct student s;strcpy (s.stu.name,"zhangsan");s.stu.age = 12;s.stu.sex = 'm';s.score = 98;printf("name = %s,age = %d, sex = %c, score = %f\n", s.stu.name, s.stu.age, s.stu.sex, s.score);struct teacher t;struct teacher *p = &t;strcpy (p->tea.name, "lisi");p->tea.age = 54; //注意这里操作符 -> 的用法p->tea.sex = 'w';strcpy (p->phone, "13112341234");printf("name = %s,age = %d, sex = %c, score = %s\n", t.tea.name, t.tea.age, t.tea.sex, t.phone);return 0;
}
上述代码中,有一个部分用到了 p->tea.age 这种形式,这是因为p是指针,而 tea 只是一个普通变量,所以从 tea 出发不能用 ->,只有指针才可以使用这个操作符。
结构体大小
字节对齐
- 含义
字节对齐主要是针对结构体而言的,通常编译器会自动对其成员变量进行对齐,以提高数据存取的效率。(因为如果按照类型实际的大小来判断的话,那么需要判断很多次,这样对齐了以后有规律就不用判断了) - 作用
- 平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
- 性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。
计算方法
- 自身对齐 (这个数据类型大小是多少就是多少)
- 默认对齐 (4字节)
- 有效对齐 (在自身对齐和默认对齐之间选最小)

规则:(地址 / 有效地址) 必须是整数。
计算过程:
- 把结构体里每个变量的类型的自身对齐,默认对齐和有效对齐分别写出来;
- 以有效对齐为准写每个变量的地址,最开始那个变量的地址肯定是0,然后后面叠加,注意在这个过程中要遵从**<规则>**,比如图中的变量 b ,本来地址应该是 1 ,但是因为 1 / 4 不是整数,所以要扩充到 4 凑整,那么这个时候 变量 a 的地址浪费了 1 2 3 这三个地址,又因为 b 本身就是 4 个字节,所以它的地址是 4 5 6 7。 c 和 d 因为都可以整除有效对齐,所以每个都加 1 个字节就行;
- 最终看一下,有效对齐最大的是 4 ,所以每个都要以 4字节 对齐,则要在变量 d 的后面再补 2 个地址:10 和 11 (因为前面的 8 和 9 已经占了 2 个地址了,还差 2 个地址凑够 4 个地址)。
- 得出结果:结构体 A 的地址是 0~11 ,所以大小是 12 。
上述过程要注意:能不能整除只能决定每个变量开头的地址,具体要每一行的地址从开头的地址要写到几要看变量类型的 sizeof 是多少。比如有 double c,c的开头地址是 8 ,那么这个变量占的字节就是 8 9 10 11 12 13 14 15 这八个字节。
相关文章:
C语言 - 结构体、结构体数组、结构体指针和结构体嵌套
结构体的意义 问题:学籍管理需要每个学生的下列数据:学号、姓名、性别、年龄、分数,请用 C 语言程序存储并处理一组学生的学籍。 单个学生学籍的数据结构: 学号(num): int 型姓名(…...
python安装playwright问题记录
python安装playwright这个时候,有得时候会https timeout 有的时候会 not found。 我最后使用的方法三,挺好用的。 PyPI The Python Package Index 可以尝试使用的方法 1. 更换pip源:使用国内的pip源可以提高下载速度并减少超时问题。例如,…...
关于gRPC微服务利弊之谈
gRPC微服务架构包括以下几个主要组件: 服务定义:定义服务的接口和消息格式,使用Protocol Buffers或其他的消息格式进行描述。服务实现:实现定义的服务接口和消息处理逻辑。服务器端实现:在服务器端,需要实…...
【Terraform学习】使用 Terraform创建Lambda函数启动EC2(Terraform-AWS最佳实战学习)
本站以分享各种运维经验和运维所需要的技能为主 《python》:python零基础入门学习 《shell》:shell学习 《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战 《k8》暂未更新 《docker学习》暂未更新 《ceph学习》ceph日常问题解…...
Mac软件删除方法?如何删除不会有残留
Mac电脑如果有太多无用的应用程序,很有可能会拖垮Mac系统的运行速度。因此,卸载电脑中无用的软件是优化Mac系统运行速度的最佳方式之一。Mac卸载应用程序的方式是和Windows有很大的区别,特别对于Mac新用户来说,如何无残留的卸载删…...
编程之道:【性能优化】提高软件效率的实际建议和避免常见陷阱
在今天的数字化世界中,软件性能是应用程序成功的关键之一。无论是网页加载速度、移动应用的响应时间还是后端服务器的处理速度,性能都直接影响着用户满意度。在追求高性能时,开发人员需要采取一系列实际建议,同时避免常见的陷阱。…...
VGG的结构:视觉几何组(Visual Geometry Group)
目录 1. VGG 的结构 2. VGG 的网络细节 3. VGG 的代码实现 1. VGG 的结构 牛津大学的视觉几何组(Visual Geometry Group)设计了 VGGNet(也称为 VGG),一种经典的卷积神经网络 (CNN) 架构。在 2014 年 ILSVRC 分类任务中,VGG 取…...
VBA:按照Excel工作表中的名称列自动汇总多个工作薄中对应sheet中所需要的数据
需求如下: B列为产品名为合并单元格,C列为供应商名,G、H列为金额数据;数据源放在同一个文件夹内,B列产品名来源于工作薄名称中间的字符串,C列供应商名来源于工作薄中的sheet名;G、H列金额数据来…...
Mybatis1.9 批量删除
1.9 批量删除 1.9.1 编写接口方法1.9.2 编写SQL语句1.9.3 编写测试方法 如上图所示,用户可以选择多条数据,然后点击上面的 删除 按钮,就会删除数据库中对应的多行数据。 1.9.1 编写接口方法 在 BrandMapper 接口中定义删除多行数据的方法。…...
CUDA小白 - NPP(2) -图像处理-算数和逻辑操作(2)
cuda小白 原始API链接 NPP GPU架构近些年也有不少的变化,具体的可以参考别的博主的介绍,都比较详细。还有一些cuda中的专有名词的含义,可以参考《详解CUDA的Context、Stream、Warp、SM、SP、Kernel、Block、Grid》 常见的NppStatus…...
python+redis实现布隆过滤器(含redis5.0版本以上和5.0以下版本的两份代码)
布隆过滤器是一种空间效率极高的概率数据结构,用于测试一个元素是否是集合的成员。如果布隆过滤器返回 False,则元素绝对不在集合中。如果返回 True,则元素可能在集合中,但也可能是一个误报。布隆过滤器利用了多个不同的哈希函数对…...
SpringBoot Thymeleaf iText7 生成 PDF(2023/08/29)
SpringBoot Thymeleaf iText7 生成 PDF(2023/08/29) 文章目录 SpringBoot Thymeleaf iText7 生成 PDF(2023/08/29)1. 前言2. 技术思路3. 实现过程4. 测试 1. 前言 近期在项目种遇到了实时生成复杂 PDF 的需求,经过一番…...
【核磁共振成像】并行采集MRI
目录 一、并行成像二、SENSE重建三、SMASH重建四、灵敏度校准五、AUTO-SMASH和VD-AUTO-SMASH六、GRAPPA重建七、SPACE RIP重建算法八、PILS重建算法九、PRUNO重建算法十、UNFOLD算法 一、并行成像 并行MR成像(pMRI):相位阵列接受线圈不但各有自己专用的接受通道,而且…...
深度图相关评测网站
文章目录 1 单目/Stereo相关测评网站介绍12 单目/Stereo相关测评网站介绍23 单目/Stereo相关测评网站介绍3 1 单目/Stereo相关测评网站介绍1 https://vision.middlebury.edu/stereo/eval3/ 2 单目/Stereo相关测评网站介绍2 http://www.cvlibs.net/datasets/kitti/eval_stereo…...
本地部署 CodeLlama 并在 VSCode 中使用 CodeLlama
本地部署 CodeLlama 并在 VSCode 中使用 CodeLlama 1. CodeLlama 是什么2. CodeLlama Github 地址3. 下载 CodeLlama 模型4. 部署 CodeLlama5. 在 VSCode 中使用 CodeLlama6. 使用WSGI启动服务7. 创建 start.sh 启动脚本 1. CodeLlama 是什么 Code Llama 是一个基于 Llama 2 的…...
Agilent33220A任意波形发生器
20MHz正弦波和方波脉冲、斜披、三角波,噪声和直流波形14-bit,50MSa/s,64K点任意波形AM、FM、PM、FSK和PWM凋制线性和对数扫描及脉冲串模式10mVpp至10Vpp幅苗范围图形化界面可以对信号设置进行可视化验证通过USB、GPIB和LAN连接 性能优异的各种函数的波形…...
springboot第37集:kafka,mqtt,Netty,nginx,CentOS,Webpack
image.png binzookeeper-server-start.shconfigzookeeper.properties.png image.png image.png 消费 image.png image.png image.png image.png image.png image.png image.png image.png image.png Netty的优点有很多: API使用简单,学习成本低。功能强大…...
NVIDIA DLI 深度学习基础 答案 领取证书
最后一节作业是水果分类的任务,一共6类,使用之前学习的知识在代码段上进行填空。 加载ImageNet预训练的基础模型 from tensorflow import kerasbase_model keras.applications.VGG16(weights"imagenet",input_shape(224, 224, 3),include_t…...
axios模拟表单提交
axios默认是application/json方式提交,controller接收的时候必须以RequestBody的方式接收,有时候不太方便。如果axios以application/x-www-form-urlencoded方式提交数据,controller接收的时候只要保证名字应对类型正确即可。 前端代码&#…...
智安网络|探索物联网架构:构建连接物体与数字世界的桥梁
物联网是指通过互联网将各种物理设备与传感器连接在一起,实现相互通信和数据交换的网络系统。物联网架构是实现这一连接的基础和框架,它允许物体与数字世界之间的互动和协作。 一、物联网架构的概述 物联网架构是一种分层结构,它将物联网系…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...
大数据治理的常见方式
大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法,以下是几种常见的治理方式: 1. 数据质量管理 核心方法: 数据校验:建立数据校验规则(格式、范围、一致性等)数据清洗&…...
路由基础-路由表
本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中,往往存在多个不同的IP网段,数据在不同的IP网段之间交互是需要借助三层设备的,这些设备具备路由能力,能够实现数据的跨网段转发。 路由是数据通信网络中最基…...
python打卡第47天
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图,展示模…...
