当前位置: 首页 > news >正文

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...

原文链接:http://tecdat.cn/?p=23800

由于空气污染对公众健康的不利影响,人们一直非常关注。世界各国的环境部门都通过各种方法(例如地面观测网络)来监测和评估空气污染问题点击文末“阅读原文”获取完整代码数据)。

介绍

全球的地面站及时测量了许多空气污染物,例如臭氧、一氧化碳、颗粒物。EPA(环境保护署)提供了空气污染数据,本文选择了颗粒物2.5(PM2.5)和空气质量指数(AQI)这两个关键变量,以可视化和分析空气污染的趋势和模式。PM2.5代表直径小于2.5微米的颗粒物浓度,AQI是综合考虑所有主要污染物的空气污染状况的整体指标。具体来说,此工作的数据源列出如下:

  • 监测人员每天的PM 2.5浓度水平和AQI指数数据;

  • 县一级的AQI年度摘要。

数据预处理

每日站点数据包含每个地面站与PM2.5相关的各种属性。有关站信息,污染物的关键变量通过以下代码从原始数据中过滤掉。重命名过滤后的数据框的列名,以方便以下分析。

#导入数据
aqi <- read_csv("aqi.csv")

37a048b958be01d2cc343f828fe49331.png

daily<- read_csv("daily.csv")

0c0b07a52ad6e789eecc5ccb93be8d30.png

names(data) <- c( "date", "pm25", "aqi",  "long", "lat")

统计摘要

对点级PM2.5浓度和县级AQI指数的基本统计描述可以帮助更好地理解这两个变量。在这里,直方图和箱形图用于可视化PM2.5浓度和AQI的分布特征。每日AQI指数可衡量空气污染的严重程度,可用于根据AQI的值将天数分为不同的类别。就空气污染水平而言,通常可以将天气分为四类,包括良好,中度,不健康和危险。

本报告中使用的县级AQI数据包括四个类别变量,代表每个类别的天数。下面的代码直观地显示了四个类别变量的分布。根据直方图,大多数县在整年总体空气质量良好,这可以通过良好''分布的偏斜来表示,不健康''和危险''的0天左右的分布间隔非常窄。此外,良好''和中等''的分布显示出相反的偏斜,这表明空气质量中等的日子在全年并不典型,因为中等''的分布集中在50天以下,而``良好''的分布在250天以上。

## 县域内aqi的直方图
vi <-aqi %>% select(`好', `中等', `不健康', `危险') %>%ggplot(data = vi )

ee061bdd556ae3fdf72a544f885bfe4a.png

县级数据代表空气污染的平均水平。来自地面站的PM2.5和AQI的点级测量描述了空气污染的详细情况和当地情况。


点击标题查阅往期内容

d05871020140db8a4ca453860ba10bfa.png

R语言空间可视化:绘制英国脱欧投票地图

outside_default.png

左右滑动查看更多

outside_default.png

01

443b8b8e0cdc38f7c48d6a3b9bccf56a.png

02

6ad5d29021e0f50728ac82dd15c5984b.png

03

947f8fca13c2c672cd1dfcf5d41d206f.png

04

5a0882dab6d9c7b681526f1cf821b48c.png

站级的PM2.5和AQI的分布如下所示。两种分布都显示出正偏度,AQI聚集在50附近,而PM2.5低于25。在这一年中,很少出现两个变量都具有高值的站点。

## ##AQI和PM2.5的直方图pmaqi  %>%
ggplot(data) +geom_histogram(aes(x = value), bins = 35) +

f1c4a0c8aa81242d46b5b4507673eb9d.png

ggplot(data) +geom_boxplot(aes(x =class,  y = value))

550ca95ffe55bd1f490265c257527bda.png

时间变化

每日数据记录了2018年监测站点每天的观测时间序列,可用于探索PM2.5和AQI的趋势。首先,针对每种数据对每种状态下站点的测量值求平均。选择了七个州的时间序列以显示其一年中的变化,如下所示。从该图可以看出,南部和西部各州在年初就经历了严重的空气污染问题。趋势曲线的高峰表明,下半年的空气质量均较差。

##按州和日排列
vis <- select(state, date, pm25, aqi) %>%group_by(state, date) %>%summarise(pm25 = mean(pm25), aqi = mean(aqi)) %>%ggplot(data = vis)

19702e87401c5bda6d3d6d9b1a610082.png

为了显示总体变化,每天汇总来自所有监视的测量值。一年中的总体变化绘制如下。我们可以看到,AQI和PM2.5的变化趋势显示出相似的模式,而夏季和冬季的空气污染更为严重。

##按天数计算select(date, pm25, aqi) %>%group_by(date) %>%summarise( mean(pm25), mean(aqi)) %>%
ggplot(data = vis) +

0e27fb22f5b6f236b146f18d79334547.png

空间分布

汇总了针对不同州的县级AQI指数,以探索每个州的空气质量的空间变化。下图通过渐变颜色绘制了变量良好天气的不同平均值。该地图显示了各州空气质量良好的日子。从地图上可以看出,北部和东部地区的空气条件比其他州更好。

##按州汇总aqi(区域水平)。vis <- aqi %>%group_by(State) %>%ggplot() +geom_polygon(aes(x = long, y = lat, group = group, fill = good)

77e2dc09571d42fe6a84eb24fcfbd52f.png

下面还绘制了不健康天数变量的平均值,这证实了以前的观察结果,即东部各州的空气条件较好。

ggplot() +geom_polygon(aes(x = long, y = lat, group ,  fill ),          scale\_fill\_distiller

9525c27cc0ee721e189a14dfc49dd974.png

每个站点的站点级别测量值汇总为年平均值。下图显示了美国年平均PM2.5浓度的空间分布。绿色点表示较低的PM2.5浓度。西部的测站测得的PM2.5浓度较高。

## 数据的汇总
###用于pm2.5pmaqi %>%summarise(pm25 = mean(pm25), aqi = mean(aqi), long = mean(long), lat = mean(lat)) %>%
ggplot() +geom_polygon(aes(x = long, y = lat, group = group)

09dd6e2335a4fb191e4c021d993b454a.png

AQI可以提供更全面的空气状况度量。站点上的点级AQI映射如下。由于AQI考虑了许多典型污染物,因此与PM2.5的模式相比,AQI的分布显示出不同的模式。

###aqi指数
vi<- vi\[class == "aqi", \]
ggplot(vi) +geom_polygon(aes(x = long, y = lat, group = group)

a9eaa7789b64d72e798ec294095fb4a2.png

结论

本报告利用了空气污染数据和R的可视化,从时空维度探讨了空气污染的分布和格局。从数据中可以识别出PM2.5和AQI的时空变化。夏季和冬季均遇到空气污染问题。西部和南部的州比北部和东部的州更容易遭受空气污染问题。

c9f041f87bedab53345149e73a829dbb.jpeg

本文中分析的数据分享到会员群,扫描下面二维码即可加群!

547c8c4f5129821f9465b1a0b56d0d1a.png

e3f7529895feed5221373c793eab0597.jpeg

点击文末“阅读原文”

获取全文完整资料。

本文选自《R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)》。

4439aab458a97cb0b2bde515688277f8.jpeg

d12cf5d7b1974ff7b30a149e42e78de4.png

点击标题查阅往期内容

上海无印良品地理空间分布特征与选址策略可视化研究

R语言空间可视化:绘制英国脱欧投票地图

R语言在地图上绘制散点饼图可视化 

r语言空间可视化绘制道路交通安全事故地图

在GIS中用ggmap地理空间数据分析

tableau的骑行路线地理数据可视化

R语言推特twitter转发可视化分析

618电商大数据分析可视化报告

用RSHINY DASHBOARD可视化美国投票记录

python主题LDA建模和t-SNE可视化

R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析案例报告

R语言动态图可视化:如何、创建具有精美动画的图

Tableau 数据可视化:探索性图形分析新生儿死亡率数据

R语言动态可视化:制作历史全球平均温度的累积动态折线图动画gif视频图

4e6e814504b2198fa865820a2dbb3f1d.png

6a4904cfd2abc13b06969e210f615c15.jpeg

a39e47d5594b842edf50cd013c44cb50.png

相关文章:

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...

原文链接&#xff1a;http://tecdat.cn/?p23800 由于空气污染对公众健康的不利影响&#xff0c;人们一直非常关注。世界各国的环境部门都通过各种方法&#xff08;例如地面观测网络&#xff09;来监测和评估空气污染问题&#xff08;点击文末“阅读原文”获取完整代码数据&…...

实现excel导出最简单方式

今天来记录一下导出excel的实现方式&#xff0c;导出的格式是xlsx的文件。 这里用到的是hutool的工具包&#xff0c;依赖如下&#xff1a; <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.3.5&…...

【每日一题Day310】LC1654到家的最少跳跃次数 | BFS

到家的最少跳跃次数【LC1654】 有一只跳蚤的家在数轴上的位置 x 处。请你帮助它从位置 0 出发&#xff0c;到达它的家。 跳蚤跳跃的规则如下&#xff1a; 它可以 往前 跳恰好 a 个位置&#xff08;即往右跳&#xff09;。它可以 往后 跳恰好 b 个位置&#xff08;即往左跳&…...

[Android AIDL] --- AIDL原理简析

上一篇文章已经讲述了如何在Android studio中搭建基于aidl的cs模型框架&#xff0c;只是用起来了&#xff0c;这次对aidl及cs端如何调用的原理进行简单分析 1 创建AIDL文件 AIDL 文件可以分为两类。 一类是用来定义接口方法&#xff0c;声明要暴露哪些接口给客户端调用&#…...

企业的固定资产管理怎么操作

一家拥有多台大型设备的工厂&#xff0c;这些设备需要定期进行保养和维护&#xff0c;以确保其正常运转。而企业内部员工由于专业知识和技能的不同&#xff0c;需要分工协作才能更好地完成各项工作任务。因此&#xff0c;在设备资产管理方面&#xff0c;如何实现高效、便捷、透…...

Rust 进阶学习

Rust 进阶学习 文章目录 Rust 进阶学习所有权作用域移动和克隆涉及函数的所有权机制涉及参数的所有权涉及返回值的所有权 引用和租借可变引用 枚举类枚举成员的属性枚举匹配 结构体结构体方法结构体关联函数 错误处理不可恢复错误可恢复错误 Rust代码组织管理Module默认的Modul…...

保护网站安全:学习蓝莲花的安装和使用,复现跨站脚本攻击漏洞及XSS接收平台

这篇文章旨在用于网络安全学习&#xff0c;请勿进行任何非法行为&#xff0c;否则后果自负。 环境准备 一、XSS基础 1、反射型XSS 攻击介绍 原理 攻击者通过向目标网站提交包含恶意脚本的请求&#xff0c;然后将该恶意脚本注入到响应页面中&#xff0c;使其他用户在查看…...

Redis——如何解决redis穿透、雪崩、击穿问题

目录 一、查询商品信息的常规代码示例二、缓存击穿2.1、缓存击穿的理解2.2、缓存击穿的解决方案2.3、解决缓存击穿的代码示例 三、缓存雪崩3.1、缓存雪崩的理解3.2、缓存雪崩的解决方案3.2.1、缓存集中过期的情况3.2.2、缓存服务器宕机的情况3.2.3、缓存服务器断电的情况 3.3、…...

MySQL一行记录是如何存储的?

目录 MySQL的数据存放在哪个文件&#xff1f; 表空间文件的结构是怎么样的&#xff1f; 1、行&#xff08;row&#xff09; 2、页&#xff08;page&#xff09; 3、区&#xff08;extent&#xff09; 4、段&#xff08;segment&#xff09; InnoDB 行格式有哪些&#xf…...

[element-ui] el-tree全部展开与收回

shrinkTreeNode () {// 改变一个全局变量this.treeStatus !this.treeStatus;// 改变每个节点的状态this.changeTreeNodeStatus(this.$refs.attrList.store.root); },// 改变节点的状态 changeTreeNodeStatus (node) {node.expanded this.treeStatus;for (let i 0; i < no…...

git 统计(命令)

查询某人某个时刻提交了多少代码 added 添加代码 removed 删除代码 total 总代码 git log --author刘俊秦 --since2023-08-01 00:00:00 --until2023-08-23 23:00:00 --prettytformat: --numstat | awk { add $1; subs $2; loc $1 - $2 } END { printf "added lines: %s…...

斐波那契1(矩阵快速幂加速递推,斐波那契前n项平方和)

链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 来源&#xff1a;牛客网 Keven 特别喜欢斐波那契数列&#xff0c;已知 fib11fib_11fib1​1&#xff0c;fib21fib_21fib2​1&#xff0c;对于 n>3n>3n>3&#xff0c;fibnfibn−2fibn−1fib_{n}fib_{n-2}fib_{n…...

minikube mac 启动

系统信息如下 最开始使用的minikube是1.22.0版本&#xff0c;按照如下命令启动&#xff1a; minikube start --memory7851 --cpus4 --image-mirror-countrycn遇到了下面一些问题&#xff1a; 1、拉取coredns:v1.8.0镜像失败 Error response from daemon: manifest for regis…...

从零开始学习 Java:简单易懂的入门指南之查找算法及排序算法(二十)

查找算法及排序算法 常见的七种查找算法&#xff1a;1. 基本查找2. 二分查找3. 插值查找4. 斐波那契查找5. 分块查找6. 哈希查找7. 树表查找 四种排序算法&#xff1a;1. 冒泡排序1.1 算法步骤1.2 动图演示1.3 代码示例 2. 选择排序2.1 算法步骤2.2 动图演示 3. 插入排序3.1 算…...

非煤矿山风险监测预警算法 yolov8

非煤矿山风险监测预警算法通过yolov8网络模型深度学习算法框架&#xff0c;非煤矿山风险监测预警算法在煤矿关键地点安装摄像机等设备利用智能化视频识别技术&#xff0c;能够实时分析人员出入井口的情况&#xff0c;人数变化并检测作业状态。YOLO的结构非常简单&#xff0c;就…...

Ansible学习笔记(一)

1.什么是Ansible 官方网站&#xff1a;https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html Ansible是一个配置管理和配置工具&#xff0c;类似于Chef&#xff0c;Puppet或Salt。这是一款很简单也很容易入门的部署工具&#xff0c;它使用SS…...

2024毕业设计选题指南【附选题大全】

title: 毕业设计选题指南 - 如何选择合适的毕业设计题目 date: 2023-08-29 categories: 毕业设计 tags: 选题指南, 毕业设计, 毕业论文, 毕业项目 - 如何选择合适的毕业设计题目 当我们站在大学生活的十字路口&#xff0c;毕业设计便成了我们面临的一项重要使命。这不仅是对我们…...

Error: PostCSS plugin autoprefixer requires PostCSS 8 问题解决办法

报错&#xff1a;Error: PostCSS plugin autoprefixer requires PostCSS 8 原因&#xff1a;autoprefixer版本过高 解决方案&#xff1a; 降低autoprefixer版本 执行&#xff1a;npm i postcss-loader autoprefixer8.0.0...

pymongo通过oplog获取数据(mongodb)

使用 MongoDB 的 oplog&#xff08;操作日志&#xff09;进行数据同步是高级的用法&#xff0c;主要用于复制和故障恢复。需要确保源 MongoDB 实例是副本集的一部分&#xff0c;因为只有副本集才会维护 oplog。 以下是简化的步骤&#xff0c;描述如何使用 oplog 进行数据同步&…...

MySQL数据备份与恢复

备份的主要目的&#xff1a; 备份的主要目的是&#xff1a;灾难恢复&#xff0c;备份还可以测试应用、回滚数据修改、查询历史数据、审计等。 日志&#xff1a; MySQL 的日志默认保存位置为&#xff1a; /usr/local/mysql/data##配置文件 vim /etc/my.cnf [mysqld] ##错误日志…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...