当前位置: 首页 > news >正文

Scikit-Learn中的特征选择和特征提取详解

414ab15dcf604c65ae1d2317786183a7.png


 概要

机器学习在现代技术中扮演着越来越重要的角色。不论是在商业界还是科学领域,机器学习都被广泛地应用。在机器学习的过程中,我们需要从原始数据中提取出有用的特征,以便训练出好的模型。但是,如何选择最佳的特征是一个关键问题。在本文中,我们将探讨特征选择和特征提取两种方法,并讨论哪种方法更好。


 

什么是特征选择和特征提取?

在介绍特征选择和特征提取之前,我们需要先了解一下什么是特征。在机器学习中,特征是指原始数据中可以用来训练模型的属性或特性。例如,在一组数字中,我们可以将每个数字视为一个特征。在图像识别中,我们可以将图像的像素点视为特征。

特征选择和特征提取都是从原始数据中提取有用的特征的方法。特征选择是指从原始数据中选择最重要的特征,而特征提取是指从原始数据中提取新的特征,以便训练更好的模型。现在让我们来详细了解这两种方法。

特征选择

特征选择是从原始数据中选择最重要的特征,以便训练更好的模型。特征选择可以帮助我们降低模型的复杂度,提高模型的准确性。在特征选择中,我们通常会根据特征的重要性来选择最佳的特征。通常,特征的重要性是通过以下方法来计算的:

  • 方差分析(ANOVA):用于比较不同特征之间的差异性。

  • 互信息:用于衡量特征之间的依赖关系。

  • 皮尔逊相关系数:用于衡量特征之间的线性相关性。

Scikit-Learn库提供了许多特征选择方法,例如方差选择、卡方检验、互信息等。以下是一个使用方差选择方法来选择最佳特征的示例代码:

from sklearn.feature_selection import VarianceThreshold
selector = VarianceThreshold(threshold=0.01)
X_train = selector.fit_transform(X_train)

在上面的代码中,我们使用方差选择方法来选择方差大于0.01的特征。然后,我们使用fit_transform()方法来对训练数据进行特征选择。

特征提取

特征提取是从原始数据中提取新的特征,以便训练更好的模型。特征提取可以帮助我们发现原始数据中潜在的特征,并将其转换为更适合训练模型的形式。在特征提取中,我们通常会使用一些转换方法来提取新的特征。以下是一些常用的特征提取方法:

  • 主成分分析(PCA):用于将高维数据转换为低维数据。

  • 线性判别分析(LDA):用于将原始数据转换为新的低维数据,以便进行分类。

  • 核方法:用于将原始数据转换为高维数据,以便更好地进行分类。

Scikit-Learn库提供了许多特征提取方法,例如PCA,LDA等。以下是一个使用PCA方法来提取新特征的示例代码:

from sklearn.decomposition import PCA
pca = PCA(n_components=2)X_train_pca = pca.fit_transform(X_train)

在上面的代码中,我们使用PCA方法将训练数据转换为两个新的特征。然后,我们使用fit_transform()方法来对训练数据进行特征提取。

特征选择和特征提取的优缺点

现在我们已经了解了特征选择和特征提取的方法,让我们来探讨一下它们的优缺点。

特征选择的优缺点

特征选择的优点是:

  • 可以降低模型的复杂度,提高模型的准确性。

  • 可以加快训练速度,减少过拟合的可能性。

  • 可以提高模型的可解释性,帮助我们更好地理解模型。

特征选择的缺点是:

  • 可能会丢失一些重要的信息,导致模型的准确性下降。

  • 计算特征的重要性需要一定的时间和计算资源。

特征提取的优缺点

特征提取的优点是:

  • 可以发现原始数据中潜在的特征,提高模型的准确性。

  • 可以将高维数据转换为低维数据,减少计算资源的消耗。

  • 可以帮助我们更好地理解原始数据和模型。

特征提取的缺点是:

  • 可能会丢失一些重要的信息,导致模型的准确性下降。

  • 特征提取的过程可能比较复杂,需要一定的时间和计算资源。

特征选择还是特征提取?

现在让我们来回答本文的主题问题:特征选择还是特征提取更好?

答案是:取决于具体的情况。

特征选择和特征提取都有各自的优缺点,我们需要根据具体的情况来选择最佳的方法。如果我们已经知道哪些特征对模型的准确性影响较大,那么特征选择可能是更好的选择。如果我们想要发现原始数据中潜在的特征,那么特征提取可能是更好的选择。

结论

在本文中,我们探讨了特征选择和特征提取两种方法,并讨论了它们的优缺点,我们需要根据具体的情况来选择最佳的方法。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

相关文章:

Scikit-Learn中的特征选择和特征提取详解

概要 机器学习在现代技术中扮演着越来越重要的角色。不论是在商业界还是科学领域,机器学习都被广泛地应用。在机器学习的过程中,我们需要从原始数据中提取出有用的特征,以便训练出好的模型。但是,如何选择最佳的特征是一个关键问…...

Python之动态规划

序言 最近在学习python语言,语言有通用性,此文记录复习动态规划并练习python语言。 动态规划(Dynamic Programming) 动态规划是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年代初,美国数学家…...

[ES]二基础 |

一、索引库操作 1、mapping属性 mapping是对索引库中文档的约束,常见的mapping属性包括: 1)type:字段数据类型,常见的简单类型有: ①字符串:text(可分词的文本)、keyword(精确值&#xff0c…...

vscode vue3自定义自动补全

敲代码多了,发现重发动作很多,于是还是定义自动补全代码吧——懒是第一生产力! 1,Ctrl Shift P打开快捷命令行:找到下面这个 2,然后找到ts: 里面给了demo照着写就行 // "Print to conso…...

Spring Cloud + Spring Boot 项目搭建结构层次示例讲解

Spring Cloud Spring Boot 项目搭建结构层次示例讲解 Spring Cloud 项目搭建结构层次示例Spring Cloud示例: Spring Boot 项目搭建结构层次讲解Spring Boot 项目通常按照一种常见的架构模式组织,可以分为以下几个主要层次:当构建一个 Spring…...

使用cgroup工具对服务器某些/全部用户进行计算资源限制

使用cgroup工具对服务器某些/全部用户进行计算资源限制 主要介绍,如何对指定/所有用户进行资源限定(这里主要介绍cpu和内存占用限制),防止某些用户大量占用服务器计算资源,影响和挤占他人正常使用服务器。 安装cgrou…...

C#获取DataTable的前N行数据然后按指定字段排序

获取DataTable的前N行数据然后按指定字段排序 可以使用以下三种代码: 第一种:使用Linq DataTable dtLast dataTable.AsEnumerable().Take(count).OrderBy(dataRow > Convert.ToInt32(dataRow["Sequence"])).CopyToDataTable(); 第二种…...

Swift 中的动态成员查找

文章目录 前言基础介绍基础示例1. 定义一个动态成员访问类:2. 访问嵌套动态成员: 使用 KeyPath 的编译时安全性KeyPath 用法示例KeyPath 进阶使用示例1. 动态访问属性:2. 结合可选属性和 KeyPath:3. 动态 KeyPath 和字典&#xff…...

leetcode做题笔记102. 二叉树的层序遍历

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 思路一:递归 int** levelOrder(struct TreeNode* root, int* returnSize, int** returnColumnSizes){int** ans(int**)mal…...

python编写四画面同时播放swap视频

当代技术让我们能够创建各种有趣和实用的应用程序。在本篇博客中,我们将探索一个基于wxPython和OpenCV的四路视频播放器应用程序。这个应用程序可以同时播放四个视频文件,并将它们显示在一个GUI界面中。 C:\pythoncode\new\smetimeplaymp4.py 准备工作…...

用XSIBackup为VMware ESXi打造完美备份方案

文章目录 VMware ESXi 备份方案引言XSIBackup安装步骤1. XSIBackup软件安装2. SSH连接3. 定位到xsibackup目录4. 修改文件权限5. 安装cron查看crontab列表6. 配置备份任务结论VMware ESXi 备份方案 引言 数据就像是我们的生命线,一旦丢失,可能会带来无法挽回的损失。对于那…...

React 项目中引入msal验证以及部分报错处理

功能实现 如何在React 项目中引入msal身份验证, 微软在官网有提供文档支持,文档包含示例和具体使用的教程,地址如下: https://learn.microsoft.com/zh-cn/azure/active-directory/develop/tutorial-v2-nodejs-webapp-msal 照着文…...

Unity3D 2021 使用 SharpZipLib 遇到的安卓打包 I18N 相关问题

在 Unity3D 中,使用 ICSharpCode.SharpZipLib.dll 来做压缩和解压缩,但打包安卓后遇到问题,原因是字符编码程序集被裁减掉了导致。 根据网上搜索,将 UnityEditor 对应目录下的 I18N开头的,比如 I18N.CJK.dll 等系列文…...

软件工程(十五) 行为型设计模式(一)

1、责任链模式 简要说明 通过多个对象处理的请求,减少请求的发送者与接收者之间的耦合。将接受对象链接起来,在链中传递请求,直到有一个对象处理这个请求。 速记关键字 传递职责 类图如下 由类图可以比较容易的看出来,其实就是自己关联自己,形成了一个链,并且自己有…...

【校招VIP】前端算法考点之快慢指针题型

考点介绍: 链表是校招面试里手撕代码出现频度比较高的题型,三线和中小厂会考察简单的链表反转,大厂会进一步考察复杂度和双指针问题,比如中间元素、是否存在环等。 『前端算法考点之快慢指针题型』相关题目及解析内容可点击文章末…...

Docker基础入门:容器数据卷与Dockerfile构建镜像(发布)

Docker基础入门:容器数据卷与Dockerfile构建镜像(发布) 一、docker容器数据卷1.1、使用docker容器数据卷1.2、具名挂载、匿名挂载1.3、如何确定是具名挂载还是匿名挂载 二、使用dockerfile2.1 初识Dockerfile2.2 Dockerfile构建过程2.3 Docke…...

部署问题集合(二十一)从零开始搭建一台NAS服务器(Linux虚拟机)

前言 因工作需要,需要从零通过虚拟机搭建一台NAS服务器,以此记录下来 步骤 1、创建虚拟机 通过VMWare创建一台新虚拟机,虚拟机内存和磁盘自定义,不过建议尽量大一点 2、服务器端配置 查看是否安装有NFS服务:rpm …...

Git小白入门——了解分布式版本管理和安装

Git是什么? Git是目前世界上最先进的分布式版本控制系统(没有之一) 什么是版本控制系统? 程序员开发过程中,对于每次开发对各种文件的修改、增加、删除,达到预期阶段的一个快照就叫做一个版本。 如果有一…...

芯科科技宣布推出下一代暨第三代无线开发平台,打造更智能、更高效的物联网

第三代平台中的人工智能/机器学习引擎可将性能提升100倍以上 Simplicity Studio 6软件开发工具包通过新的开发环境将开发人员带向第三代平台 中国,北京 - 2023年8月22日 – 致力于以安全、智能无线连接技术,建立更互联世界的全球领导厂商Silicon Labs&…...

无涯教程-Android - Intents/Filters

Android Intent 是要执行的操作的抽象描述。它可以与 startActivity 一起启动Activity,将 broadcastIntent 发送给任何BroadcastReceiver组件,并与 startService(Intent)或 bindService(Intent,ServiceConnection,int)与后台服务进…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...