【C++】map和set
map和set
文章目录
- map和set
- 关联式容器
- set
- set介绍
- set的函数测试代码
- multiset
- 注意事项
- 测试代码
- map
- map介绍
- map的函数测试代码
关联式容器
前面了解过的vector,list,string等容器都是序列式容器,存储的都是元素本身,底层都是线性的数据结构。
而map和set存储的都是<key,value> 的键值对,在进行数据检索时效率更高
STL中对键值对的定义:
template <class T1, class T2>
struct pair
{
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair(): first(T1()), second(T2())
{}
pair(const T1& a, const T2& b): first(a), second(b)
{}
};
set
文档:https://legacy.cplusplus.com/reference/set/set/?kw=set
set介绍
- 查找:set的底层是红黑树,存储键值对,中序遍历结果是有序的,默认从小到大排序,查找的时间复杂度是 l o g 2 n log_2n log2n
- 去重:除了排序,set还有去重的功能。
- 底层1:set存储的实际上是**<value,value>结构**,map才是真正的<key,value>
- 底层2:**set的key值不能修改,因为迭代器底层都是const迭代器。**但是可以插入和删除。


set的函数测试代码
void test_set1()
{// 排序+去重set<int> s;s.insert(3);s.insert(3); s.insert(3);s.insert(5);s.insert(8);s.insert(7);for (auto e : s){cout << e << " ";}cout << endl;//3 5 7 8if (s.find(5) != s.end()){cout << "找到了" << endl;}if (s.count(5)){cout << "找到了" << endl;}std::set<int> myset;std::set<int>::iterator itlow, itup;for (int i = 1; i < 10; i++)myset.insert(i * 10); // 10 20 30 40 50 60 70 80 90myset.insert(35);// 删除[30 60]//itlow = myset.lower_bound(30); // >= //itup = myset.upper_bound(60); // >//std::pair<std::set<int>::const_iterator, std::set<int>::const_iterator> ret;auto ret = myset.equal_range(30);//ret的类型是pairitlow = ret.first;itup = ret.second;// [itlow, itup)cout << *itlow << endl;cout << *itup << endl;myset.erase(itlow, itup); for (auto e : myset){cout << e << " ";}cout << endl; // 10 20 70 80 90
}
multiset
注意事项
- 允许有重复的元素
- find()函数查找的值有多个,返回的是多个值的第一个位置(树的结构决定,方便后续插入删除)

测试代码
void test_set2()
{// 排序multiset<int> s;s.insert(3);s.insert(5);s.insert(8);s.insert(7);s.insert(7);s.insert(9);s.insert(7);for (auto e : s){cout << e << " ";//3 5 7 7 7 8 9}cout << endl;// 返回中序第一个7auto pos = s.find(7);while (pos != s.end()){cout << *pos << " "; //7 7 7 8 9++pos;}cout << endl;cout << s.count(7) << endl; //3
}
map
map介绍
-
和set的相同点:
- map中的key是唯一的,并且不能修改

-
默认按照小于的方式对key进行比较
-
map中的元素如果用迭代器去遍历,可以得到一个有序的序列
-
map的底层为平衡搜索树(红黑树),查找效率比较高 O ( l o g 2 N ) O(log_2 N) O(log2N)
-
不同点
- map中的的元素是键值对(真正的)
- 可以通过key修改value的值(底层迭代器并不都是const迭代器)

map的函数测试代码
C++11支持多参数的构造函数隐式类型的转换,但是C++98没有
// 隐式类型的转换
class A
{
public:A(int a1, int a2):_a1(a1), _a2(a2){}
private:int _a1;int _a2;
};string str1 = "hello";A aa1 = { 1, 2 };
pair<string, string> kv2 = { "string", "字符串" };
- insert()
多种形式
void test_map1()
{map<string, string> dict;pair<string, string> kv1("insert", "插入");dict.insert(kv1);dict.insert(pair<string, string>("sort", "排序"));// C++98dict.insert(make_pair("string", "字符串"));// C++11 多参数的构造函数隐式类型转换dict.insert({ "string", "字符串" });// 隐式类型的转换string str1 = "hello";A aa1 = { 1, 2 };pair<string, string> kv2 = { "string", "字符串" };
}
] 插入时若map中已经有key,不对value进行覆盖


void test_map2()
{map<string, string> dict;dict.insert(make_pair("string", "字符串"));dict.insert(make_pair("sort", "排序"));dict.insert(make_pair("insert", "插入"));// 不插入,不覆盖;插入过程中,只比较key,value是相同无所谓// key已经有了就不插入了dict.insert(make_pair("insert", "xxxx"));auto it = dict.begin();while (it != dict.end()){//cout << (*it).first << ":" << (*it).second << endl;cout << it->first << ":" << it->second << endl;++it;}cout << endl;for (const auto& kv : dict){cout << kv.first << ":" << kv.second << endl;}
}
operator[],若map中没有该元素,则会先进行插入
void test_map4()
{map<string, string> dict;dict.insert(make_pair("string", "字符串"));dict.insert(make_pair("sort", "排序"));dict.insert(make_pair("insert", "插入"));cout << dict["sort"] << endl; // 查找和读dict["map"]; // 插入dict["map"] = "映射,地图"; // 修改dict["insert"] = "xxx"; // 修改dict["set"] = "集合"; // 插入+修改
}
相关文章:
【C++】map和set
map和set 文章目录 map和set关联式容器setset介绍set的函数测试代码 multiset注意事项测试代码 mapmap介绍map的函数测试代码 关联式容器 前面了解过的vector,list,string等容器都是序列式容器,存储的都是元素本身,底层都是线性的…...
crawlab通过docker单节点部署简单爬虫
crawlab 单节点docker安装 此处介绍的是单节点的方式,多节点的情况可以把爬虫上传到一个节点中,之后会同步到其它节点上 version: 3.3 services:master:image: crawlabteam/crawlabcontainer_name: crawlab_masterrestart: alwaysenvironment:CRAWLAB…...
【STM32】中断与NVIC以外部中断为例
前言 在stm32中姑且可以认为,异常就是中断 单片机上电之后,首先执行启动文件,开辟堆栈之后,开始初始化中断向量表。 NVIC NVIC NVIC是嵌套向量中断控制器,控制着整个芯片中断相关的功能,它跟内核紧密耦…...
大学生网页设计制作作业实例代码 (全网最全,建议收藏) HTML+CSS+JS
文章目录 📚web前端期末大作业 (1500套) 集合一、网页介绍二、网页集合 三、作品演示A电影主题B漫画主题C商城主题D家乡主题E旅游主题F餐饮/美食主题G环境主题H游戏主题I 个人主题K体育主题L博客主题M汽车主题N文化主题P美妆主题Q企业主题R教育主题S其他主题 &#…...
Llama模型结构解析(源码阅读)
目录 1. LlamaModel整体结构流程图2. LlamaRMSNorm3. LlamaMLP4. LlamaRotaryEmbedding 参考资料: https://zhuanlan.zhihu.com/p/636784644 https://spaces.ac.cn/archives/8265 ——《Transformer升级之路:2、博采众长的旋转式位置编码》 前言&#x…...
基于XML实现SpringIoC配置
目录 SpringIoc创建与使用的大致步骤 一.基于xml配置SpringIoc 二.基于xml配置DI 三.创建IoC容器并获取组件 SpringIoc创建与使用的大致步骤 SpringIoC的创建与使用过程分为3步 1.编写配置信息(编写XML,注解、Java类) 2.创建IoC容器&…...
Kaniko在containerd中无特权快速构建并推送容器镜像
目录 一、kaniko是什么 二、kaniko工作原理 三、kanijo工作在Containerd上 基于serverless的考虑,我们选择了kaniko作为镜像打包工具,它是google提供了一种不需要特权就可以构建的docker镜像构建工具。 一、kaniko是什么 kaniko 是一种在容器或 Kube…...
分享5款不会被打入冷宫的神器软件
检查一下你最近安装的软件,他们是不是都一样无法避免最终被你打入冷宫的命运?我们明明很懂“在精不在多”的道理,却依然让我们的电脑塞满了形形色色无用的软件。你需要知道的是,如何找到一款适合自己且真正实用的电脑软件。 自…...
Windows如何部署Redis
一、简介 Redis (Remote Dictionary Server) 是一个由意大利人 Salvatore Sanfilippo 开发的 key-value 存储系统,具有极高的读写性能,读的速度可达 110000 次/s,写的速度可达 81000 次/s 。 二、下载 访问 https://github.com/tporadows…...
VUE数据双向绑定原理解析
VUE数据双向绑定原理解析 在Vue.js中,数据双向绑定是一项非常强大的功能。它使开发者能够轻松地将模板与数据进行动态关联,实现了页面和数据之间的实时同步更新。本文将深入探讨VUE中数据双向绑定的原理,并通过代码示例演示其工作机制。 1.…...
SSM商城项目实战:订单管理
SSM商城项目实战:订单管理 在SSM商城项目中,订单管理是一个非常重要的功能模块。本文将详细介绍订单管理的实现思路和步骤代码。 实现SSM商城项目中订单管理功能的思路如下: 设计数据库表结构:根据订单管理的需求,设计…...
SELinux 入门 pt.2
哈喽大家好,我是咸鱼 在《SELinux 入门 pt.1》中,咸鱼向各位小伙伴介绍了 SELinux 所使用的 MAC 模型、以及几个重要的概念(主体、目标、策略、安全上下文) 我们还讲到: 对于受 SELinux 管制的进程,会先…...
函数(个人学习笔记黑马学习)
1、函数定义 #include <iostream> using namespace std;int add(int num1, int num2) {int sum num1 num2;return sum; }int main() {system("pause");return 0; } 2、函数的调用 #include <iostream> using namespace std;int add(int num1, int num2…...
《Flink学习笔记》——第五章 DataStream API
一个Flink程序,其实就是对DataStream的各种转换,代码基本可以由以下几部分构成: 获取执行环境读取数据源定义对DataStream的转换操作输出触发程序执行 获取执行环境和触发程序执行都属于对执行环境的操作,那么其构成可以用下图表示…...
Vue3.0 新特性以及使用变更总结
Vue3.0 在2020年9月正式发布了,也有许多小伙伴都热情的拥抱Vue3.0。去年年底我们新项目使用Vue3.0来开发,这篇文章就是在使用后的一个总结, 包含Vue3新特性的使用以及一些用法上的变更。 图片.png 为什么要升级Vue3 使用Vue2.x的小伙伴都熟悉…...
ToBeWritten之VSOC安全运营
也许每个人出生的时候都以为这世界都是为他一个人而存在的,当他发现自己错的时候,他便开始长大 少走了弯路,也就错过了风景,无论如何,感谢经历 转移发布平台通知:将不再在CSDN博客发布新文章,敬…...
2023爱分析·一站式通信解决方案市场厂商评估报告:牛信云
[图片] 01 中国企业出海发展背景及阶段 出海背景:出海,对中国企业而言,并不陌生。从最初的贸易型出海,到制造业崛起,再到互联网、移动互联网产业腾飞,中国企业在出海道路上走的越发稳健。行业也从最初的家电…...
微信小程序消防知识每天学平台设计与实现
摘 要 消防是当下一个人都需要在日常生活中所高度重视的事项。消防安全关系到居民的日常生活的安全,通过学习消防知识能够提升人们在日常生活中对于灾难的防范。通过对当下的大学生进行调查研究后发现,现在的年轻人在消防意识上比较的单薄,对…...
Oracle跨库访问DBLINK
1. DBLINK的介绍 Oracle在进行跨库访问时,可以创建DBLINK实现,比如要将UAT的表数据灌入开发环境,则可以使用UAT库为数据源,通过DBLINK实现将查出的数据灌入开发库。 简而言之就是在当前数据库中访问另一个数据库中的表中的数据 2…...
【vue3.0 组合式API与选项式API是什么,有什么区别】
vue3.0 组合式API与选项式API是什么 Vue3.0中引入了组合式API(Composition API),同时保留了选项式API(Options API)。两种 API 风格都能够覆盖大部分的应用场景。它们只是同一个底层系统所提供的两套不同的接口。实际…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
解析“道作为序位生成器”的核心原理
解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制,重点解析"道作为序位生成器"的核心原理与实现框架: 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...
