openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读
🧡💛💚💙💜OpenCV实战系列总目录
打印一个图片可以做出一个函数:
def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()
1、轮廓特征与近似
1.1 轮廓特征
前面我们计算了这个图片的轮廓:

它的轮廓信息保存在了contours中,取出第一个轮廓,计算相关参数:
cnt = contours[0]
cv2.contourArea(cnt)
cv2.arcLength(cnt,True)
打印结果:
8500.5
437.9482651948929
这是分别求出了周长和面积,这里的True表示的是否是闭合的。
1.2 轮廓近似

如图,第一个图是原图,如果将它的轮廓计算出来应该是第三个图的结果,但是我不想要这样一些带坑坑洼洼的结果,我只想要图2这样的结果呢?
原图中含有一些曲线,比如有一条曲线,这条曲线有A、B两个点,先将这两个点连上,在曲线中选到一个C点,使得这个C点到AB这条直线上距离最大,如果这个距离d小于指定的阈值t,那么这个AB直线就可以当做曲线的近似了。
那如果大于设定的阈值呢?那么曲线就会被分解成两个部分变成两个曲线,AC和BC,然后AC和BC继续去做前面的判断操作一直到找到近似直线。
但是在代码的实现却非常简单:
img = cv2.imread('contours2.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')
每行代码的意思:
- 读进来图像,还是前面的图像
- 做二值处理
- 找轮廓信息
- 找出第一个轮廓
- 深度复制图像
- 提取轮廓信息
- 将轮廓图像打印
打印结果:

接下来做轮廓近似的处理:
epsilon = 0.1*cv2.arcLength(cnt,True)
approx = cv2.approxPolyDP(cnt,epsilon,True)draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')
关键代码:approx = cv2.approxPolyDP(cnt,epsilon,True)
cv2.approxPolyDP这是计算轮廓的函数,第一个参数表示计算的轮廓,第二个是指定的阈值,这个阈值是自己指定的,一般通过周长来计算,所以approx是计算的轮廓信息,再用cv2.drawContours将轮廓拟合出来,打印图像。
打印结果:

这就是近似完的结果,这里可以调整前面计算周长的权重0.1多执行几次,这个值指定的越小结果越接近原始轮廓。
1.3 边界矩阵
继续用上面的图片,如何将一个轮廓的外接矩形标出来呢?不废话直接上代码:
img = cv2.imread('contours.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[5]x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')
前面几行都已经学习过了,直接看到这里
x,y,w,h = cv2.boundingRect(cnt)
cnt是轮廓信息,通过cv2.boundingRect可以计算出四个值x,y,w,h,一个坐标加上长宽,有这个信息就可以得到一个确定的矩形。
通过这个函数cv2.rectangle,依次传进去图像,坐标1,坐标2,颜色,线条宽度,拟合出这个轮廓
打印结果:

计算外接矩形和原始图形的面积比值:
area = cv2.contourArea(cnt)
x, y, w, h = cv2.boundingRect(cnt)
rect_area = w * h
extent = float(area) / rect_area
print ('轮廓面积与边界矩形比',extent)
第一行是计算原始面积,第二行+第三行计算外接矩形的面积,然后计算比值打印出来:
轮廓面积与边界矩形比 0.5154317244724715
外接圆:
(x,y),radius = cv2.minEnclosingCircle(cnt)
center = (int(x),int(y))
radius = int(radius)
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')

2、模板匹配方法
模板匹配在openCV中是非常重要的内容,和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1)


如图这是两个图片,我需要做的是将lena脸的部分框出来,然后右图相当于是标签,假如左图是一个9*9的图像,右图是一个3*3的图像,那么左图可以分解成9个3*3的图像,将右图与这9个区域的图像进行比对,通过计算两个图像的像素匹配程度来判断是这9个区域的那一个区域,9个区域就是从左至右从上至下一个一个进行匹配。
那这个匹配程度怎么计算呢,openCV提供了多种方法来计算,比如计算对应位置之间的像素值差异,差异值就是量化匹配程度,当然差异值越小说明匹配程度越接近。具体的匹配方法:
- TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
- TM_CCORR:计算相关性,计算出来的值越大,越相关
- TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
- TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
- TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
- TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关
这里给出一个openCV官网链接,是上面这些匹配方法的计算公式:
OpenCV: Object Detection
分别将lena和模板(lena的脸)读进来,转化为灰度图后打印出大小:
# 模板匹配
img = cv2.imread('lena.jpg', 0)
template = cv2.imread('face.jpg', 0)
h, w = template.shape[:2]
print(img.shape)
print(template.shape)
h和w是模板的长和宽,打印的shape值为:
(263, 263)
(110, 85)
调用模板匹配操作:
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR','cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
print(res.shape)
methods是所有方法
cv2.matchTemplate的参数分别为原始图像、模板、匹配方法
然后打印shape值
打印结果:
(154, 179)
这里的154=263-110+1,179=263-85+1
用这个结果去定位一下最小损失的那个像素点的位置:
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
print(min_val, max_val, min_loc, max_loc)
打印结果:
39168.0
74403584.0
(107, 89)
(159, 62)
在这个匹配方法中,我们需要的是min_loc,这个点的坐标再加上模板的长宽,就可以得到我们想要框住的区域了。
3、模板匹配效果
用6种不同的匹配方法进行模板匹配,看下结果的差异:
for meth in methods:img2 = img.copy()# 匹配方法的真值method = eval(meth)print (method)res = cv2.matchTemplate(img, template, method)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)# 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:top_left = min_locelse:top_left = max_locbottom_right = (top_left[0] + w, top_left[1] + h)# 画矩形cv2.rectangle(img2, top_left, bottom_right, 255, 2)plt.subplot(121), plt.imshow(res, cmap='gray')plt.xticks([]), plt.yticks([]) # 隐藏坐标轴plt.subplot(122), plt.imshow(img2, cmap='gray')plt.xticks([]), plt.yticks([])plt.suptitle(meth)plt.show()
对这个代码块逐行解释:
- for循环
- 深度复制图像
- 取出当前匹配方法名称(前面有一个数组存了全部的6个方法)(加上eval的原因是不能传进来一个字符串)
- 计算一个结果
- 找出最好结果和最坏结果的差异程度值和坐标
- 判断当前方法是算最小值为最佳结果还是最大值为最佳结果
- 6已解释
- 6已解释
- 6已解释
- 计算出右下角的坐标
- 通过对焦的两个点的坐标画出一个矩形将目标区域框出来
- 后面全是将结果打印出来
打印结果几乎都是一样的,就只列出一个了:

左边的图好理解,就是将lena的脸框出来了,我们完成了任务,右边就是计算出了一个最亮的位置也就是前面res变量的输出结果。
没有加上归一化操作的结果会稍微差点。
同样的道理我们做一下多个模板的匹配,比如一张图上有多个模板需要全部框出来:
img_rgb = cv2.imread('mario.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.jpg', 0)
h, w = template.shape[:2]res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8
# 取匹配程度大于%80的坐标
loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]): # *号表示可选参数bottom_right = (pt[0] + w, pt[1] + h)cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)cv2.imshow('img_rgb', img_rgb)
cv2.waitKey(0)
打印结果:

相关文章:
openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读
🧡💛💚💙💜OpenCV实战系列总目录 打印一个图片可以做出一个函数: def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows() 1、轮廓特征与近似 1.1 轮廓特征 前面我们计算了…...
cs231n_1_IntroToConv
参考的视频来自如下链接https://www.bilibili.com/video/BV1Ed4y1b7bm/ 参考笔记如下https://blog.csdn.net/TeFuirnever/article/details/89059673 x.1 CV历史 生物快速发展于5.4亿年前,那时的化石显示生物进化出了视觉,视觉使得生物多样性大爆炸。 …...
OPENCV实现SURF特征检测
1、SURF优点:SIFT速度慢,一次出现了SURF;2、使用SURF步骤:surf = cv2.xfeatures2d.SURF_create()kp,des = surf.detectAndComputer(img,mask)# -*- coding:utf-8 -*- """ 作者:794919561 日期:2023/8/31 """# -*-...
Android Gradle 同步优化
作者:究极逮虾户 很多人听到方法论三个字,就觉得我要开始pua,说我阿里味,但是我觉得这个查问题的方式可能会对大家有点帮助。 很多人都会有这样的困扰,给你的一个工作内容是一个你完全陌生的东西,第一选择…...
BeautifulSoup:学习使用BeautifulSoup库进行HTML解析和数据提取。
BeautifulSoup是一个用于解析HTML和XML文档的Python库。它可以帮助我们从网页中提取数据,并以易于操作的方式进行分析。 以下是使用BeautifulSoup进行HTML解析和数据提取的基本语法: 安装BeautifulSoup库:首先,你需要在你的Python…...
基于沙猫群算法优化的BP神经网络(预测应用) - 附代码
基于沙猫群算法优化的BP神经网络(预测应用) - 附代码 文章目录 基于沙猫群算法优化的BP神经网络(预测应用) - 附代码1.数据介绍2.沙猫群优化BP神经网络2.1 BP神经网络参数设置2.2 沙猫群算法应用 4.测试结果:5.Matlab代…...
PCL 判断三点共线(三维空间)
文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 继续之前的思路PCL 判断两条线段的平行性(三维空间),我们可以把判断三点共线看做是判断两条线段是否具有平行性,且这两条线段共用其中一个端点,基于此当这两条线段平行时,则证明这三点共线。 二、实现代码 /…...
【数据库】事务(概念和特点)
一、 什么是事务: 事务是在数据库中执行的一系列操作单元,这些操作要么全部成功提交,要么全部失败回滚。 二、事务的特点: 原子性(Atomicity):事务是一个不可分割的操作单元,要么…...
LA@齐次线性方程组解的结构
文章目录 齐次线性方程组解的结构🎈解的性质齐次线性方程组的解的线性组合还是方程组的解基础解系通解 定理:齐次线性方程组基础解系存在定理齐次线性方程组的基础解系包含的向量个数(秩)👺应用和示例推论1推论2推论3:转置矩阵对的乘积秩的性质非自由未知…...
Docker修改容器ulimit的全部方案及各方案的详细步骤
要修改Docker容器的ulimit(用户资源限制),有以下三种方案,每个方案的详细步骤如下: 方案一:在Dockerfile中设置ulimit 打开您的Dockerfile。在文件中添加以下命令来修改ulimit:RUN ulimit -n …...
进程间通信-Binder
Binder Binder框架概述服务端Binder驱动客户端 设计服务端和客户端设计服务端客户端设计 Binder与ServiceServiceAIDL 保证包裹内参数顺序IMusicPlayerServiceProxyStub 系统服务中的Binder对象ServiceManger管理的服务理解Manger功能快捷键合理的创建标题,有助于目…...
一个简单的vim例子
一.欢迎来到我的酒馆 在本章节介绍vim工具。 目录 一.欢迎来到我的酒馆二.什么是vim三.开始使用vim 二.什么是vim 2.1什么是vim vim是一种Linux命令行类型的文本编辑器。vim指的是"vi improved",意思是vi工具的升级版。vim是基于vi实现的&#x…...
sql server 备份到网络共享
场景:sql server服务器A将数据库备份文件备份到服务器B 1)服务器B创建共享目录 这里我将 D:\ProDbBak 共享,并且Everyone完全控制 2)sql server服务器A能够访问服务器B共享目录,并且能完全控制 3)修改服务…...
程序与进程
一、程序是怎么被执行的 1.在程序中,由引导代码去调用程序中得main函数,而这个过程由链接器完成,链接器将引导代码链接到我们的应用程序构成可执行文件。 2.程序运行需要通过操作系统的加载器来实现,加载器是操作系统中的程序&a…...
大模型从入门到应用——LangChain:链(Chains)-[链与索引:图问答(Graph QA)和带来源的问答(QA with Sources)]
分类目录:《大模型从入门到应用》总目录 图问答(Graph QA) 创建图 在本节中,我们构建一个示例图。目前,这对于较小的文本片段效果最好,下面的示例中我们只使用一个小片段,因为提取知识三元组对…...
spark sql 数据倾斜--join 同时开窗去重的问题优化
spark sql 数据倾斜–join 同时开窗去重的问题优化 文章目录 spark sql 数据倾斜--join 同时开窗去重的问题优化结论1. 原方案:join步骤时,同时开窗去重数据倾斜 2. 优化2.1 参数调优2.2 SQL优化 背景: 需求:在一张查询日志表中&a…...
lv3 嵌入式开发-linux介绍及环境配置
目录 1 UNIX、Linux和GNU简介 2 环境介绍 3 VMwareTools配置 4 vim配置: 1 UNIX、Linux和GNU简介 什么是UNIX? unix是一个强大的多用户、多任务操作系统,支持多种处理器架构 中文名 尤尼斯 外文名 UNIX 本质 操作系统 类型 分时操作系统 开…...
RabbitMQ工作模式-路由模式
官方文档参考:https://www.rabbitmq.com/tutorials/tutorial-four-python.html 使用direct类型的Exchange,发N条消息并使用不同的routingKey,消费者定义队列并将队列routingKey、Exchange绑定。此时使用direct模式Exchange必须要routingKey完成匹配的情况下消息才…...
StringIO BytesIO
上一篇中我们介绍了文件的基本读写操作,但是很多时候数据的读写并不一定都是在文件中,我们也可以在内存中读写数据,因此引出我们今天的主要内容,即 StringIO 和 BytesIO,让你学会在内存中进行数据的基本读写操作。 1 …...
通讯录管理系统(个人学习笔记黑马学习)
1、系统需求 通讯录是一个可以记录亲人、好友信息的工具。 本教程主要利用C来实现一个通讯录管理系统系统中需要实现的功能如下: 添加联系人:向通讯录中添加新人,信息包括(姓名、性别、年龄、联系电话、家庭住址)最多记录1000人显示联系人:显示通讯录中所有联系人信…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
