当前位置: 首页 > news >正文

Redis 主从复制和哨兵模式

一、概念

        主从复制,是指将一台 Redis 服务器的数据,复制到其他的 Redis 服务器。前者称为主节点(master/leader),后者称为从节点(slave/follower)。数据的复制是单向的,只能由主节点到从节点。Master 以写为主,Slave 以读为主。

        默认情况下,每台 Redis 服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

1.1 主要作用

        1、数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。

        2、故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。

        3、负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写 Redis 数据时应用连接主节点,读 Redis 数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高 Redis 服务器的并发量。

        4、高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是 Redis 高可用的基础。

1.2 单台瓶颈

        一般来说,要将 Redis 运用于工程项目中,只使用一台 Redis 是万万不能的,原因如下:

        1、从结构上,单个 Redis 服务器会发生单点故障,并且一台服务器需要处理所有的请求负载,压力较大。

        2、从容量上,单个 Redis 服务器内存容量有限,就算一台 Redis 服务器内存容量为 256G,也不能将所有内存用作 Redis 存储内存,一般来说,单台 Redis 最大使用内存不应该超过 20G

        电商网站上的商品,一般都是一次上传,无数次浏览的,说专业点也就是"多读少写"。对于这种场景,我们可以使如下这种架构:

        主从复制,读写分离80% 的情况下都是在进行读操作,减缓服务器的压力,在架构中经常使用。(最低需要一主二从)

二、环境配置

2.1 查看信息

        通过输入 info replication  命令可以查看当前 redis 库的信息,如下所示


127.0.0.1:6379> info replication                           # 查看当前库的信息
# Replication
role:master                                                # 当前角色 master
connected_slaves:0                                         # 没有从机
master_failover_state:no-failover
master_replid:54a28e688e4551d9699b335c17a0deb9c8d06467
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:0
second_repl_offset:-1
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0

2.2 复制文件

        复制 redis 的配置文件,复制三份,如下所示

[root@localhost myredis]# ls
redis.conf
[root@localhost myredis]# cp redis.conf redis79.conf
[root@localhost myredis]# cp redis.conf redis80.conf
[root@localhost myredis]# cp redis.conf redis81.conf
[root@localhost myredis]# ls
redis79.conf  redis80.conf  redis81.conf  redis.conf

2.3 修改文件

        需要修改上面复制的三个配置文件信息,需要修改的内容如下所示:

# 三份文件的端口号分别为 6379、6380、6381
port 6379# pid 名字
pidfile "/var/run/redis_6379.pid"# log 文件名字
logfile "6379.log"# dump.pid 的名字
dbfilename "dump6379.rdb"

2.4 启动测试

        上面都配置完毕后,3 个服务通过 3 个不同的配置文件开启,我们的准备环境就 OK 了!

# 第一台服务器启动
[root@localhost bin]# redis-server myredis/redis79.conf 
[root@localhost bin]# ls
6379.log  appendonlydir  dump.rdb  myredis  redis-benchmark  redis-check-aof  redis-check-rdb  redis-cli  redis-sentinel  redis-server
[root@localhost bin]# redis-cli -p 6379
127.0.0.1:6379> # 第二台服务器启动
[root@localhost bin]# redis-server myredis/redis80.conf 
[root@localhost bin]# ls
6379.log  6380.log  appendonlydir  dump.rdb  myredis  redis-benchmark  redis-check-aof  redis-check-rdb  redis-cli  redis-sentinel  redis-server
[root@localhost bin]# redis-cli -p 6380
127.0.0.1:6380> # 第三台服务器启动
[root@localhost bin]# redis-server myredis/redis81.conf 
[root@localhost bin]# ls
6379.log  6380.log  6381.log  appendonlydir  dump.rdb  myredis  redis-benchmark  redis-check-aof  redis-check-rdb  redis-cli  redis-sentinel  redis-server
[root@localhost bin]# redis-cli -p 6381
127.0.0.1:6381> 

        查看 redis 的进程,查看是否完全启动成功。 如下所示:

[root@localhost bin]# ps -ef | grep redis
root      62142      1  0 00:33 ?        00:00:13 redis-server 127.0.0.1:6379
root      63363      1  0 01:54 ?        00:00:00 redis-server 127.0.0.1:6380
root      63376      1  0 01:54 ?        00:00:00 redis-server 127.0.0.1:6381
root      63382  56368  0 01:54 pts/2    00:00:00 redis-cli -p 6379
root      63391  57550  0 01:55 pts/3    00:00:00 redis-cli -p 6380
root      63392  63102  0 01:55 pts/1    00:00:00 redis-cli -p 6381
root      63394  63141  0 01:55 pts/4    00:00:00 grep --color=auto redis

三、一主二从

3.1 节点信息查看

        三台 redis 服务器,默认都是 Master 节点,如下图所示

# 第一台服务器查看节点信息
127.0.0.1:6379> info replication
# Replication
role:master
connected_slaves:0
master_failover_state:no-failover
master_replid:54a28e688e4551d9699b335c17a0deb9c8d06467
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:0
second_repl_offset:-1
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0# 第二台服务器查看节点信息
127.0.0.1:6380> info replication
# Replication
role:master
connected_slaves:0
master_failover_state:no-failover
master_replid:5fa97c2e9e96b6ba5bc275a7a1c8c9126112ff03
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:0
second_repl_offset:-1
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0# 第三台服务器查看节点信息
127.0.0.1:6381> info replication
# Replication
role:master
connected_slaves:0
master_failover_state:no-failover
master_replid:2187b763138a4c5e77b58c77d4702f4f6132eaa2
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:0
second_repl_offset:-1
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0

3.2 配置从机

        使用 slaveof 命令使 master 节点变为从节点。

# 使用 slaveof 命令使主节点变为从节点
127.0.0.1:6380> slaveof 127.0.0.1 6379
OK
(1.35s)# 再次查看当前的节点信息,发现变为了从节点
127.0.0.1:6380> info replication
# Replication
role:slave               # 当前的角色
master_host:127.0.0.1    # 可以看到主机信息
master_port:6379
master_link_status:down
master_last_io_seconds_ago:-1
master_sync_in_progress:0
slave_read_repl_offset:0
slave_repl_offset:0
master_link_down_since_seconds:-1
slave_priority:100
slave_read_only:1
replica_announced:1
connected_slaves:0
master_failover_state:no-failover
master_replid:5fa97c2e9e96b6ba5bc275a7a1c8c9126112ff03
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:0
second_repl_offset:-1
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0# 使用 slaveof 命令使主节点变为从节点
127.0.0.1:6381> slaveof 127.0.0.1 6379
OK
# 再次查看当前的节点信息,发现变为了从节点
127.0.0.1:6381> info replication
# Replication
role:slave
master_host:127.0.0.1
master_port:6379
master_link_status:up
master_last_io_seconds_ago:1
master_sync_in_progress:0
slave_read_repl_offset:168
slave_repl_offset:168
slave_priority:100
slave_read_only:1
replica_announced:1
connected_slaves:0
master_failover_state:no-failover
master_replid:6ccdf51ea4dec3fbabc8fd94fdfdb4cf00856171
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:168
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:169
repl_backlog_histlen:0# 在主机上重新查看节点的信息,发现多了两个从机的信息
127.0.0.1:6379> info replication
# Replication
role:master
connected_slaves:2
slave0:ip=127.0.0.1,port=6380,state=online,offset=238,lag=1
slave1:ip=127.0.0.1,port=6381,state=online,offset=238,lag=0
master_failover_state:no-failover
master_replid:6ccdf51ea4dec3fbabc8fd94fdfdb4cf00856171
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:238
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:238

3.3 真实的主从配置

        真实的主从配置应该是在配置文件中配置的,只有在配置文件中配置才是永久的,我们上面使用命令的配置是暂时的,一旦某一个节点关机,那么也就失去了主从的配置。

3.4 主从节点测试

3.4.1 主从节点特点

        主节点可以写从节点不可以写只能读。主节点中的所有信息和数据,都会自动被从节点保存。

# 主节点可以进行写操作
127.0.0.1:6379> set k1 v1
OK# 从节点1可以查看所有的信息
# 但是无法进行写的操作
127.0.0.1:6380> clear
127.0.0.1:6380> keys *
1) "k1"
127.0.0.1:6380> get k1
"v1"
127.0.0.1:6380> set k2 v2
(error) READONLY You can t write against a read only replica.# 从节点2可以查看所有的信息
127.0.0.1:6381> get k1
"v1"

3.4.2 主节点重连测试

        主机断开连接,从机依旧连接到主机,就是无法进行写操作了。这个时候如果主机回来了,从机依旧可以直接获取到主机写的信息。

# 首先关闭主机
127.0.0.1:6379> shutdown
not connected> exit
# 重新开启主机并 set 值
[root@localhost bin]# redis-server myredis/redis79.conf 
[root@localhost bin]# redis-cli -p 6379
127.0.0.1:6379> set k2 v2
OK# 可以在从机获取到主机 set 的值
127.0.0.1:6380> get k2
"v2"

3.4.2 从节点重连测试

        如果使用命令行来配置的主从,这个时候如果从机重启了,从机就会变回主机。只要通过命令的方式再变回为从机,从机立马就可以获取到主机的所有值

127.0.0.1:6381> info replication
# Replication
role:slave                          # 当前的角色是从机
master_host:127.0.0.1
master_port:6379
master_link_status:up
master_last_io_seconds_ago:4
master_sync_in_progress:0
slave_read_repl_offset:528
slave_repl_offset:528
slave_priority:100
slave_read_only:1
replica_announced:1
connected_slaves:0
master_failover_state:no-failover
master_replid:e33ec29ec8de6e256c43a64b46057d2a81c83182
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:528
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:528# 进行重启操作
127.0.0.1:6381> shutdown
not connected> exit
[root@localhost bin]# redis-server myredis/redis81.conf 
[root@localhost bin]# redis-cli -p 6381
127.0.0.1:6381> info replication
# Replication
role:master                         # 当前的角色是主机            
connected_slaves:0
master_failover_state:no-failover
master_replid:2bd7531932a454bc6c492f04a1a96abd4a897855
master_replid2:e33ec29ec8de6e256c43a64b46057d2a81c83182
master_repl_offset:542
second_repl_offset:543
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:543
repl_backlog_histlen:0

3.5 复制原理

        Slave 启动成功连接到 master 后会向 master 发送一个 sync 命令。

        master 接到命令,启动后台的存盘进程,同时收集所有接收到的用于修改数据集命令,在后台进程执行完毕之后,master 将传送整个数据文件到 slave,并完成一次完全同步。

        全量复制:而 slave 服务在接收到数据库文件数据后,将其存盘并加载到内存中。

        增量复制Master 继续将新的所有收集到的修改命令依次传给 slave,完成同步但是只要是重新连接 master,一次完全同步(全量复制)将被自动执行,我们的数据一定可以在从机中看到。

3.6 层层链路

        上一个 Slave 可以是下一个 slave MasterSlave 同样可以接收其他 slaves 的连接和同步请求,那么该 slave 作为了链条中下一个的 master,可以有效减轻 master 的写压力!

# 配置客户端3变为客户端2的从机
127.0.0.1:6381> slaveof 127.0.0.1 6380
OK
# 查看当前的从机的信息
127.0.0.1:6381> info replication
# Replication
role:slave
master_host:127.0.0.1
master_port:6380
master_link_status:up
master_last_io_seconds_ago:4
master_sync_in_progress:0
slave_read_repl_offset:5386
slave_repl_offset:5386
slave_priority:100
slave_read_only:1
replica_announced:1
connected_slaves:0
master_failover_state:no-failover
master_replid:e33ec29ec8de6e256c43a64b46057d2a81c83182
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:5386
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:5359
repl_backlog_histlen:28# 此时查看客户端1的节点信息
# 此时的客户端1只剩下6380一个节点
127.0.0.1:6379> info replication
# Replication
role:master
connected_slaves:1
slave0:ip=127.0.0.1,port=6380,state=online,offset=5526,lag=0
master_failover_state:no-failover
master_replid:e33ec29ec8de6e256c43a64b46057d2a81c83182
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:5526
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:5526# 查看下最特殊的客户端2
# 我们发现他还是一个从节点,依旧无法进行写入操作
127.0.0.1:6380> info replication
# Replication
role:slave
master_host:127.0.0.1
master_port:6379
master_link_status:up
master_last_io_seconds_ago:9
master_sync_in_progress:0
slave_read_repl_offset:5610
slave_repl_offset:5610
slave_priority:100
slave_read_only:1
replica_announced:1
connected_slaves:1
slave0:ip=127.0.0.1,port=6381,state=online,offset=5610,lag=0
master_failover_state:no-failover
master_replid:e33ec29ec8de6e256c43a64b46057d2a81c83182
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:5610
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:5610# 客户端1进行写入
127.0.0.1:6379> set k6 v6
OK# 客户端2可以查询到
127.0.0.1:6380> get k6
"v6"# 客户端3也可以查询到
127.0.0.1:6381> get k6
"v6"

3.7 谋朝篡位

        一主二从的情况下,如果主机断了,从机可以使用命令 SLAVEOF NO ONE 将自己改为主机!这个时候其余的从机链接到这个节点。对一个从属服务器执行命令 SLAVEOF NO ONE 将使得这个从属服务器关闭复制功能,并从从属服务器转变回主服务器,原来同步所得的数据集不会被丢弃。

        即使主机再回来,也只是一个光杆司令了,从机为了正常使用跑到了新的主机上!

# 断开主节点
127.0.0.1:6379> shutdown
not connected> exit# 从节点执行命令,发现自己变为了主节点
127.0.0.1:6380> slaveof no one
OK
127.0.0.1:6380> info replication
# Replication
role:master
connected_slaves:1
slave0:ip=127.0.0.1,port=6381,state=online,offset=6045,lag=1
master_failover_state:no-failover
master_replid:6876480e76af2999855e6571bc7de430a0cc4f02
master_replid2:e33ec29ec8de6e256c43a64b46057d2a81c83182
master_repl_offset:6045
second_repl_offset:6018
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:6045

四、哨兵模式

4.1 概念

        主从切换技术的方法是:当主服务器宕机后,需要手动把一台从服务器切换为主服务器,这就需要人工干预,费事费力,还会造成一段时间内服务不可用。这不是一种推荐的方式,更多时候,我们优先考虑哨兵模式。Redis 2.8 开始正式提供了 Sentinel(哨兵) 架构来解决这个问题。

        谋朝篡位的自动版,能够后台监控主机是否故障,如果故障了根据投票数自动将从库转换为主库

        哨兵模式是一种特殊的模式,首先 Redis 提供了哨兵的命令,哨兵是一个独立的进程,作为进程,它会独立运行。原理是哨兵通过发送命令,等待 Redis 服务器响应,从而监控运行的多个 Redis 实例。

这里的哨兵有两个作用:

        1、通过发送命令,让 Redis 服务器返回监控其运行状态,包括主服务器和从服务器。

        2、当哨兵监测到 master 宕机,会自动将 slave 切换成 master,然后通过发布订阅模式通知其他的从服务器,修改配置文件,让它们切换主机。

        然而一个哨兵进程对 Redis 服务器进行监控,可能会出现问题,为此,我们可以使用多个哨兵进行监控。各个哨兵之间还会进行监控,这样就形成了多哨兵模式。

        假设主服务器宕机,哨兵1先检测到这个结果,系统并不会马上进行 failover 过程,仅仅是哨兵1主观的认为主服务器不可用,这个现象成为主观下线。当后面的哨兵也检测到主服务器不可用,并且数量达到一定值时,那么哨兵之间就会进行一次投票,投票的结果由一个哨兵发起,进行failover[故障转移]操作。切换成功后,就会通过发布订阅模式,让各个哨兵把自己监控的从服务器实现切换主机,这个过程称为客观下线。 

4.2 测试

        我们目前的状态是一主二从,下面的测试是基于这个状态。

4.2.1 创建 sentinel 的配置文件

# 创建 sentinel.conf 文件
[root@localhost myredis]# ls
redis79.conf  redis80.conf  redis81.conf  redis.conf
[root@localhost myredis]# vim sentinel.conf
[root@localhost myredis]# ls
redis79.conf  redis80.conf  redis81.conf  redis.conf  sentinel.conf# sentinel.conf 内容如下所示
# sentinel monitor 被监控的名称 ip port 1
# 上面最后一个数字1,表示主机挂掉后 slave 投票看让谁接替成为主机,得票数多少后成为主机
sentinel monitor myredis 127.0.0.1 6379 1

4.2.2 启动 sentinel 进程

# 输入命令启动 sentinel
[root@localhost bin]# redis-sentinel myredis/sentinel.conf 
68012:X 30 Aug 2023 19:44:25.745 # WARNING Memory overcommit must be enabled! Without it, a background save or replication may fail under low memory condition. Being disabled, it can also cause failures without low memory condition, see https://github.com/jemalloc/jemalloc/issues/1328. To fix this issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf and then reboot or run the command 'sysctl vm.overcommit_memory=1' for this to take effect.
68012:X 30 Aug 2023 19:44:25.745 * oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
68012:X 30 Aug 2023 19:44:25.745 * Redis version=7.2.0, bits=64, commit=00000000, modified=0, pid=68012, just started
68012:X 30 Aug 2023 19:44:25.745 * Configuration loaded
68012:X 30 Aug 2023 19:44:25.745 * Increased maximum number of open files to 10032 (it was originally set to 1024).
68012:X 30 Aug 2023 19:44:25.745 * monotonic clock: POSIX clock_gettime_._                                                  _.-``__ ''-._                                             _.-``    `.  `_.  ''-._           Redis 7.2.0 (00000000/0) 64 bit.-`` .-```.  ```\/    _.,_ ''-._                                  (    '      ,       .-`  | `,    )     Running in sentinel mode|`-._`-...-` __...-.``-._|'` _.-'|     Port: 26379|    `-._   `._    /     _.-'    |     PID: 68012`-._    `-._  `-./  _.-'    _.-'                                   |`-._`-._    `-.__.-'    _.-'_.-'|                                  |    `-._`-._        _.-'_.-'    |           https://redis.io       `-._    `-._`-.__.-'_.-'    _.-'                                   |`-._`-._    `-.__.-'    _.-'_.-'|                                  |    `-._`-._        _.-'_.-'    |                                  `-._    `-._`-.__.-'_.-'    _.-'                                   `-._    `-.__.-'    _.-'                                       `-._        _.-'                                           `-.__.-'                                               68012:X 30 Aug 2023 19:44:25.746 # WARNING: The TCP backlog setting of 511 cannot be enforced because /proc/sys/net/core/somaxconn is set to the lower value of 128.
68012:X 30 Aug 2023 19:44:27.425 * Sentinel new configuration saved on disk
68012:X 30 Aug 2023 19:44:27.425 * Sentinel ID is 7d49ccc2c94c126d96432b3ee075b37bbc4e6ba4
68012:X 30 Aug 2023 19:44:27.443 # +monitor master myredis 127.0.0.1 6379 quorum 1
68012:X 30 Aug 2023 19:44:27.519 * +slave slave 127.0.0.1:6380 127.0.0.1 6380 @ myredis 127.0.0.1 6379
68012:X 30 Aug 2023 19:44:27.522 * Sentinel new configuration saved on disk
68012:X 30 Aug 2023 19:44:27.522 * +slave slave 127.0.0.1:6381 127.0.0.1 6381 @ myredis 127.0.0.1 6379
68012:X 30 Aug 2023 19:44:27.524 * Sentinel new configuration saved on disk

4.2.3 断开测试

        如果主节点断开了,这个时候就会从从机中随机选择一个服务器作为主节点(这里面有一个投票算法)

        如果主机此时回来了,只能归并到新的主机下,当作从机,这就是哨兵模式的规则。

# 关闭主节点
127.0.0.1:6379> shutdown
(0.98s)
not connected> exit# 查看从节点1的信息
127.0.0.1:6380> info replication
# Replication
role:slave
master_host:127.0.0.1
master_port:6381
master_link_status:up
master_last_io_seconds_ago:1
master_sync_in_progress:0
slave_read_repl_offset:25095
slave_repl_offset:25095
slave_priority:100
slave_read_only:1
replica_announced:1
connected_slaves:0
master_failover_state:no-failover
master_replid:a7529ac9efada9ef3cabd4ce80c622b12fb39b69
master_replid2:7331d8dbfc77c3fe3f75d7b68df331925cbb5f49
master_repl_offset:25095
second_repl_offset:13761
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:6018
repl_backlog_histlen:19078# 查看从节点2的信息,发现他变为了主节点
127.0.0.1:6381> info replication
# Replication
role:master
connected_slaves:1
slave0:ip=127.0.0.1,port=6380,state=online,offset=26165,lag=1
master_failover_state:no-failover
master_replid:a7529ac9efada9ef3cabd4ce80c622b12fb39b69
master_replid2:7331d8dbfc77c3fe3f75d7b68df331925cbb5f49
master_repl_offset:26165
second_repl_offset:13761
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:6032
repl_backlog_histlen:20134

4.3 优点

        1、哨兵集群模式是基于主从模式的,所有主从的优点,哨兵模式同样具有。

        2、主从可以切换,故障可以转移,系统可用性更好。

        3、哨兵模式是主从模式的升级,系统更健壮,可用性更高。

4.4 缺点

        1、Redis 较难支持在线扩容,在集群容量达到上限时在线扩容会变得很复杂。

        2、实现哨兵模式的配置也不简单,甚至可以说有些繁琐

4.5 哨兵配置说明

# Example sentinel.conf
# 哨兵sentinel实例运行的端口 默认26379
port 26379# 哨兵sentinel的工作目录
dir /tmp# 哨兵sentinel监控的redis主节点的 ip port
# master-name 可以自己命名的主节点名字 只能由字母A-z、数字0-9 、这三个字符".-_"组成。
# quorum 配置多少个sentinel哨兵统一认为master主节点失联 那么这时客观上认为主节点失联了
# sentinel monitor <master-name> <ip> <redis-port> <quorum>
sentinel monitor mymaster 127.0.0.1 6379 2# 当在Redis实例中开启了requirepass foobared 授权密码 这样所有连接Redis实例的客户端都要提供密码
# 设置哨兵sentinel 连接主从的密码 注意必须为主从设置一样的验证密码
# sentinel auth-pass <master-name> <password>
sentinel auth-pass mymaster MySUPER--secret-0123passw0rd# 指定多少毫秒之后 主节点没有应答哨兵sentinel 此时 哨兵主观上认为主节点下线 默认30秒
# sentinel down-after-milliseconds <master-name> <milliseconds>
sentinel down-after-milliseconds mymaster 30000# 这个配置项指定了在发生failover主备切换时最多可以有多少个slave同时对新的master进行 同步,这个数字越小,完成failover所需的时间就越长,但是如果这个数字越大,就意味着越 多的slave因为replication而不可用。可以通过将这个值设为 1 来保证每次只有一个slave 处于不能处理命令请求的状态。
# sentinel parallel-syncs <master-name> <numslaves>
sentinel parallel-syncs mymaster 1# 故障转移的超时时间 failover-timeout 可以用在以下这些方面:
# 1. 同一个sentinel对同一个master两次failover之间的间隔时间。
# 2. 当一个slave从一个错误的master那里同步数据开始计算时间。直到slave被纠正为向正确的master那里同步数据时。
# 3.当想要取消一个正在进行的failover所需要的时间。
# 4.当进行failover时,配置所有slaves指向新的master所需的最大时间。不过,即使过了这个超时,slaves依然会被正确配置为指向master,但是就不按parallel-syncs所配置的规则来了
# 默认三分钟
# sentinel failover-timeout <master-name> <milliseconds>
sentinel failover-timeout mymaster 180000# SCRIPTS EXECUTION
# 配置当某一事件发生时所需要执行的脚本,可以通过脚本来通知管理员,例如当系统运行不正常时发邮件通知相关人员。
# 对于脚本的运行结果有以下规则:
# 若脚本执行后返回1,那么该脚本稍后将会被再次执行,重复次数目前默认为10
# 若脚本执行后返回2,或者比2更高的一个返回值,脚本将不会重复执行。
# 如果脚本在执行过程中由于收到系统中断信号被终止了,则同返回值为1时的行为相同。
# 一个脚本的最大执行时间为60s,如果超过这个时间,脚本将会被一个SIGKILL信号终止,之后重新执行。
# 通知型脚本:当sentinel有任何警告级别的事件发生时(比如说redis实例的主观失效和客观失效等
# 等),将会去调用这个脚本,这时这个脚本应该通过邮件,SMS等方式去通知系统管理员关于系统不正常
# 运行的信息。调用该脚本时,将传给脚本两个参数,一个是事件的类型,一个是事件的描述。如果
# sentinel.conf配置文件中配置了这个脚本路径,那么必须保证这个脚本存在于这个路径,并且是可执行的,否则sentinel无法正常启动成功。
# 通知脚本
# sentinel notification-script <master-name> <script-path>
sentinel notification-script mymaster /var/redis/notify.sh# 客户端重新配置主节点参数脚本
# 当一个master由于failover而发生改变时,这个脚本将会被调用,通知相关的客户端关于master地址已经发生改变的信息。
# 以下参数将会在调用脚本时传给脚本:
# <master-name> <role> <state> <from-ip> <from-port> <to-ip> <to-port>
# 目前<state>总是“failover”,
# <role>是“leader”或者“observer”中的一个。
# 参数 from-ip, from-port, to-ip, to-port是用来和旧的master和新的master(即旧的slave)通信的
# 这个脚本应该是通用的,能被多次调用,不是针对性的。
# sentinel client-reconfig-script <master-name> <script-path>
sentinel client-reconfig-script mymaster /var/redis/reconfig.sh

相关文章:

Redis 主从复制和哨兵模式

一、概念 主从复制&#xff0c;是指将一台 Redis 服务器的数据&#xff0c;复制到其他的 Redis 服务器。前者称为主节点&#xff08;master/leader&#xff09;&#xff0c;后者称为从节点&#xff08;slave/follower&#xff09;。数据的复制是单向的&#xff0c;只能由主节点…...

【已解决】在 SpringBoot 中使用 CloseableHttpClient 调用接口时,接收参数中的中文变为“?“

问题描述 由于项目需要&#xff0c;需要在代码中使用POST请求去调用另一个服务的接口&#xff0c;即不通过前端&#xff0c;A 项目直接在方法中发起HTTP请求调用 B 项目的接口&#xff0c;当请求体中的参数有中文时&#xff0c;参数接收后中文会变为“?”。 具体原因是参数的…...

研磨设计模式day15策略模式

场景 问题描述 经常会有这样的需要&#xff0c;在不同的时候&#xff0c;要使用不同的计算方式。 解决方案 策略模式 定义&#xff1a; 解决思路&#xff1a;...

Densenet模型详解

模型介绍 DenseNet的主要思想是密集连接&#xff0c;它在卷积神经网络&#xff08;CNN&#xff09;中引入了密集块&#xff08;Dense Block&#xff09;&#xff0c;在这些块中&#xff0c;每个层都与前面所有层直接连接。这种设计可以让信息更快速地传播&#xff0c;有助于解…...

华为eNSP模拟器中,路由器如何添加serial接口

在ensp模拟器中新建拓扑后&#xff0c;添加2个路由器。 在路由器图标上单击鼠标右键&#xff0c;选择设置选项。 在【视图】选项卡的【eNSP支持的接口卡】窗口查找serial接口卡。 选择2SA接口卡&#xff0c;将其拖动到路由器空置的卡槽位。 如上图所示&#xff0c;已经完成路由…...

Linux脚本- 执行当前文件下前500个.c文件,并将每个文件对应的执行结果重定向到同名的.ok文件中

需求&#xff1a;执行当前文件下前500个.c文件&#xff0c;并将每个文件对应的执行结果重定向到同名的.ok文件中 以下是一个用于实现该功能的 Bash 脚本。 #!/bin/bash# 计数器&#xff0c;用于限制处理的文件数量 counter0# 遍历当前目录下的所有 .c 文件 for c_file in *.c…...

高速公路自动驾驶汽车超车控制方法研究

目录 摘要 ............................................................................................................ I Abstract ...................................................................................................... II 目录 ...............…...

Java 多线程系列Ⅰ(创建线程+查看线程+Thread方法+线程状态)

多线程基础 一、创建线程的五种方法前置知识1、方法一&#xff1a;使用继承Thread类&#xff0c;重写run方法2、方法二&#xff1a;实现Runnable接口&#xff0c;重写run方法3、方法三&#xff1a;继承Thread&#xff0c;使用匿名内部类4、方法四&#xff1a;实现Runnable&…...

无入侵接口文档smart-doc

Smart-doc优点&#xff1a; 1.非侵入式生成接口文档 2.减少接口文档的手动更新麻烦&保证了接口文档和代码的一致 3.随时可生成最新的接口文档 4.保持团队代码风格一致:smart-doc支持javadoc&#xff0c;必须按照这个才能生成有注释的接口文档 最终效果 1.导入依赖 <pl…...

nacos配置超级管理员账户,只能mysql存储数据(或者其他数据库)

nacos本身是不允许授权超级管理员账号的&#xff0c;也就是角色名“ROLE_ADMIN”。作者在页面上试过了&#xff0c;不必再次尝试改的方式是直接改数据库里面的数据...

【前端自动化部署】,Devops,CI/CD

DevOps 提到Jenkins&#xff0c;想到的第一个概念就是 CI/CD 在这之前应该再了解一个概念。 DevOps Development 和 Operations 的组合&#xff0c;是一种方法论&#xff0c;并不特指某种技术或者工具。DevOps 是一种重视 Dev 开发人员和 Ops 运维人员之间沟通、协作的流程。…...

【C语言】探讨蕴藏在表达式求解中的因素

&#x1f6a9;纸上得来终觉浅&#xff0c; 绝知此事要躬行。 &#x1f31f;主页&#xff1a;June-Frost &#x1f680;专栏&#xff1a;C语言 &#x1f525;该篇将探讨 操作符 和 类型转换 对表达式求解的影响。 目录&#xff1a; 隐式类型转换算术转换操作符的属性❤️ 结语 隐…...

2023/8/31 - Be a wise person and live in the present

...

【Flutter】Flutter 使用 video_player 播放视频

【Flutter】Flutter 使用 video_player 播放视频 文章目录 一、前言二、video_player 简介三、安装和配置四、基本使用五、完整示例 六、高级功能七、总结 一、前言 大家好&#xff0c;我是小雨青年&#xff0c;今天我要和大家分享一款非常实用的 Flutter 包——video_player。…...

如何使用 ChatGPT 快速制作播客和其他长篇内容

使用ChatGPT快速制作播客和其他长篇内容是一个高效且具有一定创造性的过程。以下是一些详细的步骤和技巧&#xff0c;以帮助你充分利用ChatGPT来制作高质量的内容。 一、准备阶段 确定主题或话题&#xff1a;在开始制作之前&#xff0c;你需要明确你的播客或长篇内容将聚焦的主…...

JavaScript基础语法02——JS书写位置

哈喽&#xff0c;大家好&#xff0c;我是雷工&#xff01; 今天继续学习JavaScript基础语法&#xff0c;JS的书写位置&#xff0c;俗话说&#xff1a;好记性不如烂笔头&#xff0c;边学边记&#xff0c;方便回顾。 1、行内JavaScript 代码写在标签内部 示例&#xff1a; <…...

LInux快捷命令

切换到行头&#xff1a;ctrla 或者 ctrlhome 切换到行尾:ctrale 或者 ctrlend 光标向左切换一个单词&#xff1a;ctrl← 光标向右切换一个单词&#xff1a;ctrl→ 历史命令搜索&#xff1a;history 历史命令匹配第一条执行&#xff1a;!x &#xff08;x表示历史命令…...

jvm的内存划分区域

jvm划分5个区域&#xff1a; java虚拟机栈、本地方法栈、堆、程序计数器、方法区。 各个区各自的作用&#xff1a; 1.本地方法栈&#xff1a;用于管理本地方法的调用&#xff0c;里面并没有我们写的代码逻辑&#xff0c;其由native修饰&#xff0c;由 C 语言实现。 2.程序计数…...

什么是数据中心IP,优缺点是什么?

如果根据拥有者或者说发送地址来分类的话&#xff0c;可以将代理分为三类&#xff1a;数据中心ip,住宅ip,移动ip 本文我们来了解数据中心ip的原理以及他们的优势劣势&#xff0c;才能选择适合自己的代理。 一、什么是数据中心ip代理&#xff1f; 数据中心ip是由数据中心拥有…...

模块化与组件化:开发中的双剑合璧

引言&#xff1a;模块化与组件化的重要性 在现代软件开发中&#xff0c;随着项目规模的增长和技术的复杂性增加&#xff0c;如何有效地组织和管理代码变得越来越重要。模块化与组件化作为两种主要的代码组织方法&#xff0c;为开发者提供了有效的工具&#xff0c;帮助他们创建…...

【C++初阶】list的常见使用操作

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前学习C和算法 ✈️专栏&#xff1a;C航路 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章对你有帮助的话 欢迎 评论&#x1f4ac; 点赞&#x1…...

排序之插入排序

文章目录 前言一、直接插入排序1、基本思想2、直接插入排序的代码实现3、直接插入排序总结 二、希尔排序1、希尔排序基本思想2、希尔排序的代码实现3、希尔排序时间复杂度 前言 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大…...

c# - - - 安装.net core sdk

如图&#xff0c;安装的是.Net Core 2.2版本 查看安装成功...

Golang Gorm 高级查询之where + find

插入测试数据 package mainimport ("fmt""gorm.io/driver/mysql""gorm.io/gorm" )type Student struct {ID int64Name string gorm:"size:6"Age intEmail *string }func (*Student) TableName() string {return "student&q…...

【LeetCode】30 天 Pandas 挑战

一、笔记 1.对某列进行筛选 df[(df[column1]条件1) | (df[column2]条件2) & (df[column3]条件3)][[columns]]真题&#xff1a; &#xff08;一&#xff09;条件筛选——1.大的国家&#xff08;一&#xff09;条件筛选——2.可回收且低脂的产品&#xff08;一&#xff09;…...

头歌MYSQL——课后作业2 数据表中数据的插入、修改和删除

第1关&#xff1a;数据表中插入一条记录,对指定字段赋值 任务描述 本关任务&#xff1a;在library数据库的reader数据表中插入一条数据 姓名xm为林团团&#xff0c;电话号码dhhm为13507311234&#xff0c;其余字段取默认值 显示数据表的所有数据 为了完成本关任务&#xff0c…...

Maven的profiles多环境配置

一个项目通常都会有多个不同的运行环境&#xff0c;例如开发环境&#xff0c;测试环境、生产环境等。而不同环境的构建过程很可能是不同的&#xff0c;例如数据源配置、插件、以及依赖的版本等。每次将项目部署到不同的环境时&#xff0c;都需要修改相应的配置&#xff0c;这样…...

go 协程

golang中的并发是函数相互独立运行的能力。Goroutines是并发运行的函数。Golang提供了 如何实现go协程 只需要在函数前面加上go即可 go task()package mainimport ("fmt""time" )func show(msg string) {for i : 0; i < 5; i {fmt.Printf("msg: …...

【python爬虫案例】用python爬豆瓣读书TOP250排行榜!

文章目录 一、爬虫对象-豆瓣读书TOP250二、python爬虫代码讲解三、讲解视频四、完整源码 一、爬虫对象-豆瓣读书TOP250 您好&#xff0c;我是 马哥python说 &#xff0c;一名10年程序猿。 今天我们分享一期python爬虫案例讲解。爬取对象是&#xff0c;豆瓣读书TOP250排行榜数…...

Qt中 gui 模块和 widgets 模块的区别

1. gui 模块提供了基本的图形系统抽象层,包括QPaintDevice、QPainter等类,这些类构成了Qt的绘图基础。 2. widgets 模块在 gui 模块的基础上,提供了完整的桌面级用户界面控件,如按钮、列表、滑块等。这些控件继承自更基础的图形类。 3. gui 模块是更底层的图形功能,widgets模…...